We consider the Lagrange and the Markov dynamical spectra associated with a conservative Anosov flow on a compact manifold of dimension 3 (including geodesic flows of negative curvature and suspension flows). We show that for a large set of real functions and typical conservative Anosov flows, both the Lagrange and Markov dynamical spectra have a non-empty interior.
机构:
Univ Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, FranceUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
Beguin, F.
Bonatti, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bourgogne, CNRS, UMR 5584, Inst Math Bourgogne, F-21004 Dijon, FranceUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France
Bonatti, C.
Yu, B.
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Dept Math, Shanghai 200092, Peoples R ChinaUniv Paris 13, CNRS, Applicat UMR 7539, Lab Anal,Geometrie, F-93430 Villetaneuse, France