Tree Structures for Mining Association Rules

被引:0
|
作者
Frans Coenen
Graham Goulbourne
Paul Leng
机构
[1] The University of Liverpool,Department of Computer Science
来源
关键词
association rules; set-enumeration tree;
D O I
暂无
中图分类号
学科分类号
摘要
A well-known approach to Knowledge Discovery in Databases involves the identification of association rules linking database attributes. Extracting all possible association rules from a database, however, is a computationally intractable problem, because of the combinatorial explosion in the number of sets of attributes for which incidence-counts must be computed. Existing methods for dealing with this may involve multiple passes of the database, and tend still to cope badly with densely-packed database records. We describe here a class of methods we have introduced that begin by using a single database pass to perform a partial computation of the totals required, storing these in the form of a set enumeration tree, which is created in time linear to the size of the database. Algorithms for using this structure to complete the count summations are discussed, and a method is described, derived from the well-known Apriori algorithm. Results are presented demonstrating the performance advantage to be gained from the use of this approach. Finally, we discuss possible further applications of the method.
引用
收藏
页码:25 / 51
页数:26
相关论文
共 50 条
  • [21] Parallel mining of association rules
    IBM Almaden Research Cent, San Jose, United States
    IEEE Trans Knowl Data Eng, 6 (962-969):
  • [22] Mining association rules in folksonornies
    Schmitz, Christoph
    Hotho, Andreas
    Jaeschke, Robert
    Stumme, Gerd
    DATA SCIENCE AND CLASSIFICATION, 2006, : 261 - +
  • [23] Mining clusters with association rules
    Kosters, WA
    Marchiori, E
    Oerlemans, AAJ
    ADVANCES IN INTELLIGENT DATA ANALYSIS, PROCEEDINGS, 1999, 1642 : 39 - 50
  • [24] Mining negative association rules
    Yuan, XH
    Buckles, BP
    Yuan, ZS
    Zhang, J
    ISCC 2002: SEVENTH INTERNATIONAL SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, PROCEEDINGS, 2002, : 623 - 628
  • [25] Mining indirect association rules
    Hamano, S
    Sato, M
    ADVANCES IN DATA MINING: APPLICATIONS IN IMAGE MINING, MEDICINE AND BIOTECHNOLOGY, MANAGEMENT AND ENVIRONMENTAL CONTROL, AND TELECOMMUNICATIONS, 2004, 3275 : 106 - 116
  • [26] Mining Utility Association Rules
    Lee, Yue-Shi
    Yen, Show-Jane
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2018), 2018, : 6 - 10
  • [27] Mining vague association rules
    Lu, An
    Ke, Yiping
    Cheng, James
    Ng, Wilfred
    ADVANCES IN DATABASES: CONCEPTS, SYSTEMS AND APPLICATIONS, 2007, 4443 : 891 - +
  • [28] Mining generalized association rules
    Srikant, R
    Agrawal, R
    FUTURE GENERATION COMPUTER SYSTEMS, 1997, 13 (2-3) : 161 - 180
  • [29] Mining quantitative association rules
    Zhu, WH
    Yin, J
    Zhou, XF
    CONCURRENT ENGINEERING: THE WORLDWIDE ENGINEERING GRID, PROCEEDINGS, 2004, : 315 - 320
  • [30] Parallel mining of association rules
    Agrawal, R
    Shafer, JC
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) : 962 - 969