Near order and metric-like functions on the cone of positive definite matrices

被引:0
|
作者
Raluca Dumitru
Jose A. Franco
机构
[1] University of North Florida,Department of Mathematics and Statistics
来源
Positivity | 2024年 / 28卷
关键词
Metric functions; Partially ordered sets; Means of operators; Spectral geometric means; 47A63; 47A56; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce a new relation on the cone of positive definite matrices and we study its properties and its effect on operator monotonicity and convexity. Furthermore, we use this new relation to establish analogies between the weighted geometric means A♯tB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\sharp _t B$$\end{document} and the spectral weighted geometric means A♮tB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\natural _t B$$\end{document} of positive definite matrices A and B, via the Thompson metric d∞(A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_\infty (A,B)$$\end{document} and the semi-metric d(A,B)=2‖log(A-1♯B)‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(A,B)=2\Vert \log (A^{-1}\sharp B)\Vert .$$\end{document}
引用
收藏
相关论文
共 50 条