Near order and metric-like functions on the cone of positive definite matrices

被引:0
|
作者
Raluca Dumitru
Jose A. Franco
机构
[1] University of North Florida,Department of Mathematics and Statistics
来源
Positivity | 2024年 / 28卷
关键词
Metric functions; Partially ordered sets; Means of operators; Spectral geometric means; 47A63; 47A56; 47A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we introduce a new relation on the cone of positive definite matrices and we study its properties and its effect on operator monotonicity and convexity. Furthermore, we use this new relation to establish analogies between the weighted geometric means A♯tB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\sharp _t B$$\end{document} and the spectral weighted geometric means A♮tB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\natural _t B$$\end{document} of positive definite matrices A and B, via the Thompson metric d∞(A,B)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_\infty (A,B)$$\end{document} and the semi-metric d(A,B)=2‖log(A-1♯B)‖.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d(A,B)=2\Vert \log (A^{-1}\sharp B)\Vert .$$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] Near order and metric-like functions on the cone of positive definite matrices
    Dumitru, Raluca
    Franco, Jose A.
    [J]. POSITIVITY, 2024, 28 (01)
  • [2] Geometric properties of positive definite matrices cone with respect to the Thompson metric
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 2054 - 2064
  • [3] SEPARATION AXIOMS AND METRIC-LIKE FUNCTIONS
    ANTON, H
    PERVIN, WJ
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1976, 65 (02) : 299 - 306
  • [4] Hamiltonian actions on the cone of positive definite matrices
    Lim, Yongdo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 460 : 1 - 16
  • [5] Metric spaces and positive definite functions
    Schoenberg, I. J.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 44 (1-3) : 522 - 536
  • [6] ON A GEOMETRIC PROPERTY OF POSITIVE DEFINITE MATRICES CONE
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02) : 64 - 76
  • [7] ORDER-DISTANCE AND OTHER METRIC-LIKE FUNCTIONS ON JOINTLY DISTRIBUTED RANDOM VARIABLES
    Dzhafarov, Ehtibar N.
    Kujala, Janne V.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (09) : 3291 - 3301
  • [8] ON PROJECTION OF A POSITIVE DEFINITE MATRIX ON A CONE OF NONNEGATIVE DEFINITE TOEPLITZ MATRICES
    Filipiak, Katarzyna
    Markiewicz, Augustyn
    Mieldzioc, Adam
    Sawikowska, Aneta
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 33 : 74 - 82
  • [9] On the Extremal Rays of the Cone of Positive, Positive Definite Functions
    Philippe Jaming
    Máté Matolcsi
    Szilárd G. Révész
    [J]. Journal of Fourier Analysis and Applications, 2009, 15 : 561 - 582
  • [10] On the Extremal Rays of the Cone of Positive, Positive Definite Functions
    Jaming, Philippe
    Matolcsi, Mate
    Revesz, Szilard G.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2009, 15 (04) : 561 - 582