We prove Michael-Simon type Sobolev inequalities for n-dimensional submanifolds in (n+m)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n+m)$$\end{document}-dimensional Riemannian manifolds with nonnegative kth intermediate Ricci curvature by using the Alexandrov-Bakelman-Pucci method. Here k=min(n-1,m-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k=\min (n-1,m-1)$$\end{document}. These inequalities extend Brendle’s Michael-Simon type Sobolev inequalities on Riemannian manifolds with nonnegative sectional curvature Brendle (Commun. Pure Appl. Math. 76(9), 2192–2218 (2022)) and Dong-Lin-Lu’s Michael-Simon type Sobolev inequalities on Riemannian manifolds with asymptotically nonnegative sectional curvature Dong et al. (Sobolev inequalities in manifolds with asymptotically nonnegative curvature, 2022) to the k-Ricci curvature setting. In particular, a simple application of these inequalities gives rise to some isoperimetric inequalities for minimal submanifolds in Riemannian manifolds.