Counting dimensions of L-harmonic functions with exponential growth

被引:0
|
作者
Xian-Tao Huang
机构
[1] Sun Yat-sen University,School of Mathematics
来源
Geometriae Dedicata | 2020年 / 209卷
关键词
Second order elliptic equation; Exponential growth function; 35J15; 58J05;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω⊂Rn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^{n-1}$$\end{document} be a bounded open set, X=Ω×R⊆Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X=\Omega \times {\mathbb {R}}\subseteq {\mathbb {R}}^{n}$$\end{document} be the infinite strip. Let L be a second order uniformly elliptic operator of divergence form acting on a function f∈Wloc1,2(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W_{\text {loc}}^{1,2}(X)$$\end{document} given by Lf=∑i,j=1n∂∂xi(aij(x)∂f∂xj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Lf=\sum _{i,j=1}^{n}\frac{\partial }{\partial x_{i}}\bigl (a^{ij}(x)\frac{\partial f}{\partial x_{j}}\bigr )$$\end{document}. It is natural to consider the solutions of Lu=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Lu=0$$\end{document} with boundary value u|∂Ω×R=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u|_{\partial \Omega \times {\mathbb {R}}}=0$$\end{document} and exponential growth at most d: |u(x′,xn)|≤C~ed|xn|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|u(x',x_{n})|\le {\tilde{C}}e^{d|x_{n}|}$$\end{document} for some C~>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\tilde{C}}>0$$\end{document}. Denote by Ad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{d}$$\end{document} the solution space. In (Acta Math Sin (Engl Ser)15:525–534, 1999), Hang and Lin proved that dimAd≤Cdn-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {dim}{\mathcal {A}}_{d}\le Cd^{n-1}$$\end{document}. The power n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} is sharp, but one may wonder whether there are more precise estimates for the constant C. In this note, we consider some natural subspaces of Ad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}_{d}$$\end{document} and obtain some estimates of dimensions of these subspaces. Compared with the case L=ΔX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=\Delta _{X}$$\end{document}, when d is sufficiently large, the estimates obtained in this note are sharp both on the power n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} and the constant C.
引用
收藏
页码:31 / 42
页数:11
相关论文
共 50 条
  • [41] Counting conjugacy classes of fully irreducibles: double exponential growth
    Ilya Kapovich
    Catherine Pfaff
    Geometriae Dedicata, 2024, 218
  • [42] On L-functions of certain exponential sums
    Zhang, Jun
    Feng, Weiduan
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 26 : 7 - 31
  • [43] Slow Growth for Universal Harmonic Functions
    MCarmen Gómez-Collado
    Félix Martínez-Giménez
    Alfredo Peris
    Francisco Rodenas
    Journal of Inequalities and Applications, 2010
  • [44] GROWTH OF HARMONIC FUNCTIONS OF 3 VARIABLES
    ARSHON, IS
    EVGRAFOV, MA
    DOKLADY AKADEMII NAUK SSSR, 1962, 147 (04): : 755 - &
  • [45] Slow Growth for Universal Harmonic Functions
    Carmen Gomez-Collado, M.
    Martinez-Gimenez, Felix
    Peris, Alfredo
    Rodenas, Francisco
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [46] GROWTH OF HARMONIC-FUNCTIONS IN HYPERSPHERES
    FRYANT, A
    SHANKAR, H
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (02) : 453 - 462
  • [48] Moment L-functions, partial L-functions and partial exponential sums
    Lei Fu
    Daqing Wan
    Mathematische Annalen, 2004, 328 : 193 - 228
  • [49] Moment L-functions, partial L-functions and partial exponential sums
    Fu, L
    Wan, DQ
    MATHEMATISCHE ANNALEN, 2004, 328 (1-2) : 193 - 228
  • [50] Sampling theorem for entire functions of exponential growth
    Chung, J
    Chung, SY
    Kim, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (01) : 217 - 228