On the stability and convergence of an implicit logarithmic scheme for diffusion equations with nonlinear reaction

被引:0
|
作者
Jorge E. Macías-Díaz
Ahmed S. Hendy
机构
[1] Universidad Autónoma de Aguascalientes,Departamento de Matemáticas y Física
[2] Benha University,Department of Mathematics, Faculty of Science
[3] Ural Federal University,Department of Computational Mathematics and Computer Science, Institute of Natural sciences and Mathematics
来源
关键词
Reaction–diffusion equations; Implicit logarithmic scheme; Structure-preserving method; Numerical efficiency analysis; 65M06; 65M12; 65Q10; 34K37;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we investigate numerically a diffusion equation with nonlinear reaction, defined spatially over a closed and bounded interval of the real line. The partial differential equation is expressed in an equivalent logarithmic form, and initial and Dirichlet boundary data are imposed upon the problem. An implicit finite-difference discretization of this logarithmic model is proposed then. We show that the numerical scheme is capable of preserving the constant solutions of the continuous model. Moreover, we establish the existence of positive and bounded numerical solutions using analytical arguments. The theoretical analysis of the numerical model is carried out also. In particular, we establish that the method is a consistent technique, we provide a priori bounds for the numerical solutions, and we prove the stability and the convergence of the scheme by applying a suitable Gronwall-type inequality. As one of the consequences of stability, we show not only that the solutions of the numerical model exist, but also that they are unique.
引用
下载
收藏
页码:735 / 749
页数:14
相关论文
共 50 条
  • [21] AN EFFICIENT IMPLICIT FEM SCHEME FOR FRACTIONAL-IN-SPACE REACTION-DIFFUSION EQUATIONS
    Burrage, Kevin
    Hale, Nicholas
    Kay, David
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04): : A2145 - A2172
  • [22] Convergence and stability of implicit methods for jump-diffusion
    Higham, Desmond J.
    Kloeden, Peter E.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (02) : 125 - 140
  • [23] An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations
    Boillat, E
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (04): : 749 - 765
  • [24] Linear and nonlinear marginal stability for fronts of hyperbolic reaction diffusion equations
    Benguria, RD
    Depassier, MC
    PHYSICAL REVIEW E, 2002, 66 (02): : 1 - 026607
  • [25] Nonlinear stability of travelling wave fronts for delayed reaction diffusion equations
    Lv, Guangying
    Wang, Mingxin
    NONLINEARITY, 2010, 23 (04) : 845 - 873
  • [26] Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization
    Hafsa, Omar Anza
    Mandallena, Jean Philippe
    Michaille, Gerard
    ASYMPTOTIC ANALYSIS, 2019, 115 (3-4) : 169 - 221
  • [27] ON STABILITY FOR NONLINEAR IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS
    Benchohra, Mouffak
    Lazreg, Jamal E.
    MATEMATICHE, 2015, 70 (02): : 49 - 61
  • [28] Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing
    Mikula, K
    Ramarosy, N
    NUMERISCHE MATHEMATIK, 2001, 89 (03) : 561 - 590
  • [29] Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing
    Karol Mikula
    Narisoa Ramarosy
    Numerische Mathematik, 2001, 89 : 561 - 590
  • [30] An implicit-explicit Runge-Kutta-Chebyshev scheme for diffusion-reaction equations
    Verwer, JG
    Sommeijer, BP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05): : 1824 - 1835