Schrödinger Operators with Sparse Potentials: Asymptotics of the Fourier Transform¶of the Spectral Measure

被引:0
|
作者
Denis Krutikov
Christian Remling
机构
[1] Universität Essen,
[2] Fachbereich Mathematik/Informatik,undefined
[3] 45117 Essen,undefined
[4] Germany.¶E-mail: denis.kroutikov@uni-essen.de,undefined
[5] Universität Osnabrück,undefined
[6] Fachbereich Mathematik/Informatik,undefined
[7] 49069 Osnabrück,undefined
[8] Germany.¶E-mail: cremling@mathematik.uni-osnabrueck.de,undefined
来源
关键词
Fourier; Fourier Transform; Resonance Structure; Physical Interpretation; Spectral Measure;
D O I
暂无
中图分类号
学科分类号
摘要
We study the pointwise behavior of the Fourier transform of the spectral measure for discrete one-dimensional Schrödinger operators with sparse potentials. We find a resonance structure which admits a physical interpretation in terms of a simple quasiclassical model. We also present an improved version of known results on the spectrum of such operators.
引用
收藏
页码:509 / 532
页数:23
相关论文
共 50 条
  • [21] Schrödinger Operators with Distributional Matrix Potentials
    V. N. Moliboga
    Ukrainian Mathematical Journal, 2015, 67 : 748 - 763
  • [22] Hierarchical Schrödinger Operators with Singular Potentials
    Alexander Bendikov
    Alexander Grigor’yan
    Stanislav Molchanov
    Proceedings of the Steklov Institute of Mathematics, 2023, 323 : 12 - 46
  • [23] Schrödinger Operators with Rapidly Oscillating Potentials
    Itaru Sasaki
    Integral Equations and Operator Theory, 2007, 58 : 563 - 571
  • [24] Dissipative Schrödinger Operators with Matrix Potentials
    B.P. Allahverdiev
    Potential Analysis, 2004, 20 : 303 - 315
  • [25] Hierarchical Schrödinger Operators with Singular Potentials
    Bendikov, Alexander
    Grigor'yan, Alexander
    Molchanov, Stanislav
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2023, 323 (01) : 12 - 46
  • [26] On Spectral Problems of Discrete Schrödinger Operators
    Chi-Hua Chan
    Po-Chun Huang
    Applications of Mathematics, 2021, 66 : 325 - 344
  • [27] Spectral instability for some Schrödinger operators
    A. Aslanyan
    E.B. Davies
    Numerische Mathematik, 2000, 85 : 525 - 552
  • [28] Spectral Multipliers for Magnetic Schrödinger Operators
    Zheng S.
    La Matematica, 2024, 3 (3): : 907 - 940
  • [29] Inverse Spectral Problems for Schrödinger Operators
    Hamid Hezari
    Communications in Mathematical Physics, 2009, 288 : 1061 - 1088
  • [30] Asymptotics for Christoffel functions associated to continuum Schrödinger operators
    Eichinger, Benjamin
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (02): : 519 - 553