On hyper-order of solutions of higher order linear differential equations with meromorphic coefficients

被引:0
|
作者
Jianren Long
Jun Zhu
机构
[1] Guizhou Normal University,School of Mathematics and Computer Science
关键词
complex differential equation; meromorphic function; hyper-order; 34M10; 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the growth of meromorphic solutions of the differential equations f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f=0 $$\end{document} and f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=F(z),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f=F(z), $$\end{document} where A0(z)≢0,A1(z),…,Ak−1(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A_{0}(z)\not\equiv0, A_{1}(z), \ldots, A_{k-1}(z)$\end{document} and F(z)≢0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F(z)\not \equiv0$\end{document} are meromorphic functions. A precise estimation of the hyper-order of meromorphic solutions of the above equations is given provided that there exists one dominant coefficient, which improves and extends previous results given by Belaïdi, Chen, etc.
引用
收藏
相关论文
共 50 条