Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits

被引:0
|
作者
Dennis R Sparta
Alice M Stamatakis
Jana L Phillips
Nanna Hovelsø
Ruud van Zessen
Garret D Stuber
机构
[1] University of North Carolina at Chapel Hill,Department of Psychiatry
[2] University of North Carolina at Chapel Hill,Department of Cell and Molecular Physiology
[3] Neuroscience Center,Department of Neuroscience and Pharmacology
[4] University of North Carolina at Chapel Hill,undefined
[5] Curriculum in Neurobiology,undefined
[6] University of North Carolina at Chapel Hill,undefined
[7] Synaptic Transmission 1,undefined
[8] Neuroscience Drug Discovery Denmark,undefined
[9] H. Lundbeck,undefined
[10] Faculty of Health Sciences,undefined
[11] University of Copenhagen,undefined
来源
Nature Protocols | 2012年 / 7卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In vivo optogenetic strategies have redefined our ability to assay how neural circuits govern behavior. Although acutely implanted optical fibers have previously been used in such studies, long-term control over neuronal activity has been largely unachievable. Here we describe a method to construct implantable optical fibers to readily manipulate neural circuit elements with minimal tissue damage or change in light output over time (weeks to months). Implanted optical fibers readily interface with in vivo electrophysiological arrays or electrochemical detection electrodes. The procedure described here, from implant construction to the start of behavioral experimentation, can be completed in approximately 2–6 weeks. Successful use of implantable optical fibers will allow for long-term control of mammalian neural circuits in vivo, which is integral to the study of the neurobiology of behavior.
引用
收藏
页码:12 / 23
页数:11
相关论文
共 50 条
  • [21] Neural serotonergic circuits for controlling long-term voluntary alcohol consumption in mice
    Arnauld Belmer
    Ronan Depoortere
    Kate Beecher
    Adrian Newman-Tancredi
    Selena E. Bartlett
    Molecular Psychiatry, 2022, 27 : 4599 - 4610
  • [22] Exploring the long-term biocompatibility of implantable nanogenerators
    Winkless, Laurie
    MATERIALS TODAY, 2018, 21 (09) : 929 - 930
  • [23] Long-Term Implantable Medical Wireless Telemetry
    Topsakal, Erdem
    2017 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2017, : 1845 - 1846
  • [24] LONG-TERM USE OF AN IMPLANTABLE VENOUS CATHETER
    PERSSON, B
    JEPPSSON, B
    HELLSTROM, M
    WESTHOLM, D
    BENGMARK, S
    EUROPEAN JOURNAL OF CANCER, 1990, 26 (07) : 853 - 854
  • [25] THE LONG-TERM RESULTS OF THE AUTOMATIC IMPLANTABLE DEFIBRILLATOR
    LEENHARDT, A
    THOMAS, O
    BEL, A
    BIZOT, J
    COUMEL, P
    SLAMA, R
    ARCHIVES DES MALADIES DU COEUR ET DES VAISSEAUX, 1994, 87 (11): : 1617 - 1622
  • [26] IMPLANTABLE TELEMETRY SYSTEM FOR LONG-TERM EMG
    MARQUES, M
    DUTOURNE, B
    BIOTELEMETRY, 1977, 4 (01) : 28 - 33
  • [27] Long-term stability of UHMWPE fibers
    Forster, Amanda L.
    Forster, Aaron M.
    Chin, Joannie W.
    Peng, Jyun-Siang
    Lin, Chiao-Chi
    Petit, Sylvain
    Kang, Kai-Li
    Paulter, Nick
    Riley, Michael A.
    Rice, Kirk D.
    Al-Sheikhly, Mohamad
    POLYMER DEGRADATION AND STABILITY, 2015, 114 : 45 - 51
  • [29] Neural circuits for long-term water-reward memory processing in thirsty Drosophila
    Shyu, Wei-Huan
    Chiu, Tai-Hsiang
    Chiang, Meng-Hsuan
    Cheng, Yu-Chin
    Tsai, Ya-Lun
    Fu, Tsai-Feng
    Wu, Tony
    Wu, Chia-Lin
    NATURE COMMUNICATIONS, 2017, 8
  • [30] Long-Term Precision Editing of Neural Circuits Using Engineered Gap Junction Hemichannels
    Dzirasa, Kafui
    Ransey, Elizabeth
    Chesnov, Kirill
    Wisdom, Elias
    Bowman, Ryan
    Rodriguez, Tatiana
    Adamson, Elise
    Thomas, Gwenaelle
    Almoril-Porras, Agustin
    Schwennesen, Hannah
    Colon-Ramos, Daniel
    Hultman, Rainbo
    Bursac, Nenad
    BIOLOGICAL PSYCHIATRY, 2022, 91 (09) : S14 - S15