Existence and Multiplicity Results for Generalized Laplacian Problems with a Parameter

被引:0
|
作者
Yong-Hoon Lee
Xianghui Xu
机构
[1] Pusan National University,Department of Mathematics
[2] Ludong University,School of Mathematics and Statistics Science
关键词
Positive solution; Existence; Multiplicity; Nonexistence; Singular weight; 34B16; 34B18;
D O I
暂无
中图分类号
学科分类号
摘要
We study the homogeneous Dirichlet boundary value problem of generalized Laplacian equations with a singular weight which may not be integrable. Some existence, multiplicity and nonexistence results of positive solutions under two different asymptotic behaviors of the nonlinearity at 0 and ∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\infty $$\end{document} are established in terms of different ranges of a parameter. Our approach is based on the fixed point theorem of expansion/compression of a cone and Schauder’s fixed point theorem.
引用
收藏
页码:403 / 424
页数:21
相关论文
共 50 条