Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian

被引:170
|
作者
Bereanu, C. [1 ]
Mawhin, J. [1 ]
机构
[1] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
关键词
phi-Laplacian; Dirichlet problem; Neumann problem; periodic solutions; continuation theorem; Leray-Schauder degree;
D O I
10.1016/j.jde.2007.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Leray-Schauder degree theory we obtain various existence and multiplicity results for nonlinear boundary value problems (phi(u'))' = f (t, u, u'), l(u, u') = 0 where l(u, u') = 0 denotes the Dirichlet, periodic or Neumann boundary conditions on [0, T], phi:]-a, a[ --> R is an increasing homeomorphism, phi(0) = 0. The Difichlet problem is always solvable. For Neumann or periodic boundary conditions, we obtain in particular existence conditions for nonlinearities which satisfy some sign conditions, upper and lower solutions theorems, Ambrosetti-Prodi type results. We prove Lazer-Solimini type results for singular nonlinearities and periodic boundary conditions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:536 / 557
页数:22
相关论文
共 50 条