Numerical Simulations of Air–Water Flow of a Non-linear Progressive Wave in an Opposing Wind

被引:0
|
作者
Xianyun Wen
Stephen Mobbs
机构
[1] University of Leeds,Institute for Climate and Atmospheric Science, School of Earth and Environment, Centre for Computational Fluid Dynamics
[2] University of Leeds,National Centre for Atmospheric Science, Centre for Computational Fluid Dynamics
来源
Boundary-Layer Meteorology | 2015年 / 156卷
关键词
Air–sea interaction; Air–water flow; Opposing wind ; Progressive wave;
D O I
暂无
中图分类号
学科分类号
摘要
We present detailed numerical results for two-dimensional viscous air–water flow of a non-linear progressive water wave when the speed of the opposing wind varies from zero to 1.5 times the wave phase speed. It is revealed that at any speed of the opposing wind there exist two rotating airflows, one anti-clockwise above the wave peak and one clockwise above the wave trough. These rotating airflows form a buffer layer between the main stream of the opposing wind and the wave surface. The thickness of the buffer layer decreases and the strength of rotation increases as the wind speed increases. The profile of the average x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document}-component of velocity reveals that the water wave behaves as a solid surface producing larger wind stress compared to the following-wind case.
引用
收藏
页码:91 / 112
页数:21
相关论文
共 50 条
  • [1] Numerical Simulations of Air-Water Flow of a Non-linear Progressive Wave in an Opposing Wind
    Wen, Xianyun
    Mobbs, Stephen
    BOUNDARY-LAYER METEOROLOGY, 2015, 156 (01) : 91 - 112
  • [2] Numerical Simulations of Laminar Air–Water Flow of a Non-linear Progressive Wave at Low Wind Speed
    X. Wen
    S. Mobbs
    Boundary-Layer Meteorology, 2014, 150 : 381 - 398
  • [3] Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
    Wen, X.
    Mobbs, S.
    BOUNDARY-LAYER METEOROLOGY, 2014, 150 (03) : 381 - 398
  • [4] Numerical simulations of non-linear wave radiation in inviscid fluid with a free surface
    Markiewicz, M
    Ben-Nasr, K
    Mahrenholtz, O
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 43 (10-11) : 1279 - 1300
  • [5] Numerical simulation of non-linear wave interaction with an offshore wind turbine foundation
    Liang, Qiuhua
    Zang, Jun
    Borthwick, Alistair G. L.
    Taylor, Paul H.
    Liu, Shuxue
    Smith, Christopher
    PROCEEDINGS OF THE SEVENTH (2006) ISOPE PACIFIC/ASIA OFFSHORE MECHANICS SYMPOSIUM (ISOPE PACOMES-2006), 2006, : 231 - +
  • [6] Numerical simulations for the non-linear Molodensky problem
    Lothar Banz
    Adrian Costea
    Heiko Gimperlein
    Ernst P. Stephan
    Studia Geophysica et Geodaetica, 2014, 58 : 489 - 504
  • [7] Numerical simulations for the non-linear Molodensky problem
    Banz, Lothar
    Costea, Adrian
    Gimperlein, Heiko
    Stephan, Ernst P.
    STUDIA GEOPHYSICA ET GEODAETICA, 2014, 58 (04) : 489 - 504
  • [8] Discrete and continuum methods for numerical simulations of non-linear wave propagation in discontinuous media
    Vorobiev, Oleg
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (04) : 482 - 507
  • [9] Numerical simulation for non-linear thermal wave
    Liu, Kuo-Chi
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 1385 - 1399
  • [10] Aspects of non-linear numerical simulations for dam construction
    Commend, Stéphane
    Zimmermann, Thomas
    Sarf, Jean-Luc
    Davalle, Eric
    International Journal on Hydropower and Dams, 2002, 9 (04): : 121 - 126