Numerical simulations for the non-linear Molodensky problem

被引:0
|
作者
Lothar Banz
Adrian Costea
Heiko Gimperlein
Ernst P. Stephan
机构
[1] Leibniz Universität Hannover,Institut für Angewandte Mathematik
[2] University of Copenhagen,Department of Mathematical Sciences
来源
关键词
Molodensky problem; heat-kernel smoothing; boundary elements; Nash-Hörmander iteration;
D O I
暂无
中图分类号
学科分类号
摘要
We present a boundary element method to compute numerical approximations to the non-linear Molodensky problem, which reconstructs the surface of the Earth from the gravitational potential and the gravity vector. Our solution procedure solves a sequence of exterior oblique Robin problems and is based on a Nash-Hörmander iteration. We apply smoothing with the heat equation to overcome a loss of derivatives in the surface update. Numerical results show the error between the approximation and the exact solution in a model problem.
引用
收藏
页码:489 / 504
页数:15
相关论文
共 50 条
  • [1] Numerical simulations for the non-linear Molodensky problem
    Banz, Lothar
    Costea, Adrian
    Gimperlein, Heiko
    Stephan, Ernst P.
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2014, 58 (04) : 489 - 504
  • [2] A numerical analysis to the non-linear fin problem
    Rafael Cortell
    [J]. Journal of Zhejiang University-SCIENCE A, 2008, 9 : 648 - 653
  • [3] NUMERICAL STUDY OF A NON-LINEAR ELASTICITY PROBLEM
    RUIZ, L
    [J]. LECTURE NOTES IN MATHEMATICS, 1983, 1005 : 266 - 283
  • [5] A numerical analysis to the non-linear fin problem
    Cortell, Rafael
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (05): : 648 - 653
  • [6] Numerical approximation for a non-linear membrane problem
    Kerdid, Nabil
    Le Dret, Herve
    Saidi, Abdelkader
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (09) : 908 - 914
  • [7] Aspects of non-linear numerical simulations for dam construction
    Commend, Stéphane
    Zimmermann, Thomas
    Sarf, Jean-Luc
    Davalle, Eric
    [J]. International Journal on Hydropower and Dams, 2002, 9 (04): : 121 - 126
  • [8] NUMERICAL RESOLUTION OF AN ANISOTROPIC NON-LINEAR DIFFUSION PROBLEM
    Brull, Stephane
    Deluzet, Fabrice
    Mouton, Alexandre
    [J]. COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (01) : 203 - 224
  • [9] A NUMERICAL-METHOD FOR THE NON-LINEAR NEUMANN PROBLEM
    KANNAN, R
    PROSKUROWSKI, W
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 52 (01) : 105 - 121
  • [10] Improved estimates for the linear Molodensky problem
    Sanso, Fernando
    Betti, Barbara
    [J]. JOURNAL OF GEODESY, 2024, 98 (05)