QCD improved top-quark decay at next-to-next-to-leading order

被引:0
|
作者
Rui-Qing Meng
Sheng-Quan Wang
Ting Sun
Chao-Qin Luo
Jian-Ming Shen
Xing-Gang Wu
机构
[1] Guizhou Minzu University,Department of Physics
[2] Hunan University,School of Physics and Electronics
[3] Chongqing University,Department of Physics, Chongqing Key Laboratory for Strongly Coupled Physics
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We analyse the top-quark decay at the next-to-next-to-leading order (NNLO) in QCD by using the Principle of Maximum Conformality (PMC) which provides a systematic way to eliminate renormalization scheme and scale ambiguities in perturbative QCD predictions. The PMC renormalization scales of the coupling constant αs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _s$$\end{document} are determined by absorbing the non-conformal β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} terms that govern the behavior of the running coupling by using the Renormalization Group Equation (RGE). We obtain the PMC scale Q⋆=15.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_\star =15.5$$\end{document} GeV for the top-quark decay, which is an order of magnitude smaller than the conventional choice μr=mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _r=m_t$$\end{document}, reflecting the small virtuality of the QCD dynamics of the top-quark decay process. Moreover, due to the non-conformal β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} terms disappear in the pQCD series, there is no renormalon divergence and the NLO QCD correction term is greatly increased while the NNLO QCD correction term is suppressed compared to the conventional results obtained at μr=mt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _r=m_t$$\end{document}. By further including the next-to-leading (NLO) electroweak corrections, the finite W boson width and the finite bottom quark mass, we obtain the top-quark total decay width Γttot=1.3112-0.0189+0.0190\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma ^{\textrm{tot}}_t=1.3112^{+0.0190}_{-0.0189}$$\end{document} GeV, where the error is the squared averages of the top-quark mass Δmt=±0.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta m_t=\pm 0.7$$\end{document} GeV, the coupling constant Δαs(MZ)=±0.0009\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta \alpha _s(M_Z)=\pm 0.0009$$\end{document} and the estimation of unknown higher-order terms using the PAA method with [N/M]=[1/1]. The PMC improved predictions for the top-quark decay are complementary to the previous PMC calculations for top-quark pair production and helpful for detailed studies of properties of the top-quark.
引用
收藏
相关论文
共 50 条
  • [41] Top and bottom quark forward-backward asymmetries at next-to-next-to-leading order QCD in (un)polarized electron positron collisions
    Bernreuther, Werner
    Chen, Long
    Lu, Peng-Cheng
    Si, Zong-Guo
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [42] Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD
    de Florian, Daniel
    Mazzitelli, Javier
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (20)
  • [43] Virtual top-quark effects on the H->b(b)over-bar decay at next-to-leading order in QCD
    Chetyrkin, KG
    Kniehl, BA
    Steinhauser, M
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (04) : 594 - 597
  • [44] Virtual photon structure functions to the next-to-next-to-leading order in QCD
    Ueda, Takahiro
    Sasaki, Ken
    Uematsu, Tsuneo
    [J]. PHYSICAL REVIEW D, 2007, 75 (11):
  • [45] Top quark threshold production at a γγ collider at next-to-next-to-leading order -: art. no. 051501
    Czarnecki, A
    Melnikov, K
    [J]. PHYSICAL REVIEW D, 2002, 65 (05):
  • [46] Charm-quark contribution to KL→μ+μ- at next-to-next-to-leading order
    Gorbahn, Martin
    Haisch, Ulrich
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [47] Heavy-to-heavy quark decays at next-to-next-to-leading order
    Pak, Alexey
    Czarnecki, Andrzej
    [J]. PHYSICAL REVIEW D, 2008, 78 (11):
  • [48] Analytic decay width of the Higgs boson to massive bottom quarks at next-to-next-to-leading order in QCD
    Wang, Jian
    Wang, Yefan
    Zhang, Da-Jiang
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [49] NEXT-TO-NEXT-TO-LEADING ORDER QCD ANALYSIS OF DIS STRUCTURE FUNCTIONS
    PARENTE, G
    KOTIKOV, AV
    KRIVOKHIZHIN, VG
    [J]. PHYSICS LETTERS B, 1994, 333 (1-2) : 190 - 195
  • [50] Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes
    Degrande, Celine
    Maltoni, Fabio
    Wang, Jian
    Zhang, Cen
    [J]. PHYSICAL REVIEW D, 2015, 91 (03):