A Lattice-Theoretical Framework for Annular Filters in Morphological Image Processing

被引:0
|
作者
Christian Ronse
Henk J.A.M. Heijmans
机构
[1] Université Louis Pasteur,
[2] LSIIT - UPRES-A 7005,undefined
[3] Département dInformatique,undefined
[4] 7,undefined
[5] rue René Descartes,undefined
[6] 67084 Strasbourg Cedex,undefined
[7] France (e-mail: ronse@dpt-info.u-strasbg.fr; URL: http://dpt-info.u-strasbg.fr/∼ronse/),undefined
[8] CWI P.O. Box 94079,undefined
[9] NL-1090 GB Amsterdam,undefined
[10] The Netherlands (e-mail: henkh@cwi.nl; URL: http://www.cwi.nl/∼henkh/),undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 1998年 / 9卷
关键词
Key wordsModular lattice, Idempotent operators, Image processing, Mathematical morphology, Erosion, Dilation, Annular filters;
D O I
暂无
中图分类号
学科分类号
摘要
We study the idempotence of operators of the form ɛ∨id∧δ (where ɛ≤δ and both ɛ and δ are increasing) on a modular lattice ℒ, in relation to the idempotence of the operators ɛ∨id and id∧δ. We consider also the conditions under which ɛ∨id∧δ is the composition of ɛ∨id and id∧δ. The case where δ is a dilation and ɛ an erosion is of special interest. When ℒ is a complete lattice on which Minkowski operations can be defined, we obtain very precise conditions for the idempotence of these operators. Here id∧δ is called an annular opening, ɛ∨id is called an annular closing, and ɛ∨id∧δ is called an annular filter. Our theory can be applied to the design of idempotent morphological filters removing isolated spots in digital pictures.
引用
收藏
页码:45 / 89
页数:44
相关论文
共 50 条
  • [21] Theoretical aspects of morphological filters by reconstruction
    Crespo, J
    Serra, J
    Schafer, RW
    SIGNAL PROCESSING, 1995, 47 (02) : 201 - 225
  • [22] Multichannel filters for image processing
    Plataniotis, KN
    Androutsos, D
    Venetsanopoulos, AN
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 1997, 9 (02) : 143 - 158
  • [23] Integer filters for image processing
    Malik, N.R.
    Huang, G.
    Medical and Biological Engineering and Computing, 1988, 26 (01): : 62 - 67
  • [24] Group filters and image processing
    Tolimieri, R
    An, MY
    COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 255 - 308
  • [25] Morphological algorithms for image processing
    Indian Statistical Institute, Calcutta, India
    不详
    不详
    IETE Tech Rev, 2008, 1 (9-18):
  • [26] Photonic morphological image processing
    Buczynski, R
    Szoplik, T
    Veretennicoff, I
    Thienpont, H
    OPTOELECTRONIC INFORMATION PROCESSING: OPTICS FOR INFORMATION SYSTEMS, 2001, CR81 : 289 - 313
  • [27] Morphological Algorithms for Image Processing
    Chanda, Bhabatosh
    IETE TECHNICAL REVIEW, 2008, 25 (01) : 9 - 18
  • [28] Image Processing Filters for Grids of Cells Analogous to Filters Processing Grids of Pixels
    Haase, Robert
    FRONTIERS IN COMPUTER SCIENCE, 2021, 3
  • [29] IMAGE SAMPLING STRUCTURE CONVERSION BY MORPHOLOGICAL FILTERS
    PEI, SC
    CHEN, FC
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 1994, 6 (01) : 13 - 24
  • [30] Adaptive morphological filters for color image enhancement
    Deng-Wong, P.
    Cheng, F.
    Venetsanopoulos, A.N.
    Journal of Intelligent and Robotic Systems: Theory and Applications, 1996, 15 (02): : 181 - 207