The Hilbert transform of a measure

被引:0
|
作者
Alexei Poltoratski
Barry Simon
Maxim Zinchenko
机构
[1] Texas A&M University,Mathematics Department
[2] California Institute of Technology,Mathematics 253
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let e be a homogeneous subset of ℝ in the sense of Carleson. Let µ be a finite positive measure on ℝ and Hµ(x) its Hilbert transform. We prove that if limt→∞t|e∩{x ‖Hµ(x)| > t}| = 0, then µs(e) = 0, where µs is the singular part of µ.
引用
收藏
页码:247 / 265
页数:18
相关论文
共 50 条
  • [21] A characterization of the Hilbert transform
    Arcozzi, N
    Fontana, L
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) : 1747 - 1749
  • [22] Fractional Hilbert transform
    Lohmann, AW
    Mendlovic, D
    Zalevsky, Z
    OPTICS LETTERS, 1996, 21 (04) : 281 - 283
  • [23] On a hyper Hilbert transform
    Chen, JC
    Ding, Y
    Fan, DS
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2003, 24 (04) : 475 - 484
  • [24] On the Approximability of the Hilbert Transform
    Boche, Holger
    Pohl, Volker
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2530 - 2534
  • [25] INEQUALITY FOR HILBERT TRANSFORM
    REDHEFFE.R
    PACIFIC JOURNAL OF MATHEMATICS, 1971, 37 (01) : 181 - &
  • [26] DISCRETE HILBERT TRANSFORM
    KAK, SC
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1970, 58 (04): : 585 - &
  • [27] PROPERTY OF HILBERT TRANSFORM
    PICHORIDES, SK
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (18): : 1197 - 1199
  • [28] Hilbert Transform Relations
    Zhechev, Bozhan
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2005, 5 (02) : 3 - 13
  • [29] INEQUALITY FOR HILBERT TRANSFORM
    ANDERSEN, KF
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1977, 16 (OCT): : 290 - 296
  • [30] Hilbert transform for Boehmians
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (01) : 19 - 36