Language function following preterm birth: prediction using machine learning

被引:0
|
作者
Evdoxia Valavani
Manuel Blesa
Paola Galdi
Gemma Sullivan
Bethan Dean
Hilary Cruickshank
Magdalena Sitko-Rudnicka
Mark E. Bastin
Richard F. M. Chin
Donald J. MacIntyre
Sue Fletcher-Watson
James P. Boardman
Athanasios Tsanas
机构
[1] University of Edinburgh,Usher Institute, Medical School
[2] University of Edinburgh,MRC Centre for Reproductive Health
[3] Royal Infirmary of Edinburgh,NHS Lothian
[4] Royal Infirmary of Edinburgh,Neonatal Physiotherapy
[5] University of Edinburgh,NHS Lothian
[6] University of Edinburgh,Neonatology
[7] Royal Hospital for Sick Children,Centre for Clinical Brain Sciences
[8] University of Edinburgh,Muir Maxwell Epilepsy Centre, Centre for Clinical Brain Sciences
[9] University of Edinburgh,Division of Psychiatry, Deanery of Clinical Sciences, Royal Edinburgh Hospital
来源
Pediatric Research | 2022年 / 92卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:480 / 489
页数:9
相关论文
共 50 条
  • [41] Prediction and feature selection of low birth weight using machine learning algorithms
    Reza, Tasneem Binte
    Salma, Nahid
    JOURNAL OF HEALTH POPULATION AND NUTRITION, 2024, 43 (01)
  • [42] Deep Learning in Predicting Preterm Birth: A Comparative Study of Machine Learning Algorithms
    Zhang, Fangchao
    Tong, Lingling
    Shi, Chen
    Zuo, Rui
    Wang, Liwei
    Wang, Yan
    MATERNAL-FETAL MEDICINE, 2024, 6 (03) : 141 - 146
  • [43] Identifying women at high risk for preterm birth based on clinical data using machine learning
    Cohen, Gal
    Biron-Shental, Tal
    Meshali, Tal
    Louzoun, Yoram
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2024, 230 (01) : S392 - S393
  • [44] Association of preterm birth with medications: machine learning analysis using national health insurance data
    Lee, Kwang-Sig
    Song, In-Seok
    Kim, Eun Sun
    Kim, Hae-In
    Ahn, Ki Hoon
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 2022, 305 (05) : 1369 - 1376
  • [45] Can We Predict Preterm Birth by Analyzing the Vaginal Microbiome Using Machine Learning Techniques?
    Park, Sunwha
    You, Young-Ah
    Moon, Jeongsup
    Kang, Nayeon
    Hur, Young Min
    Kim, Soo Min
    Lee, Gain
    Kim, Young-Han
    Jung, Yun Ji
    Kwon, Eunjin
    Ansari, AbuZar
    Park, Taesung
    Kim, Young Ju
    REPRODUCTIVE SCIENCES, 2022, 29 (SUPPL 1) : 200 - 200
  • [46] Association of preterm birth with medications: machine learning analysis using national health insurance data
    Kwang-Sig Lee
    In-Seok Song
    Eun Sun Kim
    Hae-In Kim
    Ki Hoon Ahn
    Archives of Gynecology and Obstetrics, 2022, 305 : 1369 - 1376
  • [47] Identification of unique risk groups for preterm birth using routinely screened biomarkers and machine learning
    Jelliffe-Pawlowski, Laura
    Oltman, Scott P.
    Baer, Rebecca J.
    Ryckman, Kelli K.
    Rand, Larry
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2017, 216 (01) : S185 - S185
  • [48] Prediction of preterm birth using the cervical consistency index
    Parra-Saavedra, M.
    Gomez, L.
    Barrero, A.
    Parra, G.
    Vergara, F.
    Navarro, E.
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2011, 38 (01) : 44 - 51
  • [49] Individual prediction for remission following electroconvulsive therapy using machine learning
    Nakajima, Kazuki
    Takamiya, Akihiro
    Kudo, Shun
    Minami, Fusaka
    Liang, Kuo-ching
    Kishimoto, Taishiro
    Kikuchi, Toshiaki
    Yamagata, Bun
    Mimura, Masaru
    Hirano, Jinichi
    JOURNAL OF ECT, 2021, 37 (03) : 212 - 212
  • [50] Prediction of Preterm Birth Using Cervical Length and Clinical
    Longo, Monica
    REPRODUCTIVE SCIENCES, 2024, 31 : 133A - 134A