Constant angle surfaces in ℍ2 × ℝ

被引:0
|
作者
Franki Dillen
Marian Ioan Munteanu
机构
[1] Katholieke Universiteit Leuven,Departement Wiskunde
[2] University ‘Al.I.Cuza’ of Iaşi,Faculty of Mathematics
关键词
surfaces; product manifold; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
We classify all surfaces in ℍ2 × ℝ for which the unit normal makes a constant angle with the ℝ-direction. Here ℍ2 is the hyperbolic plane.
引用
收藏
页码:85 / 97
页数:12
相关论文
共 50 条
  • [31] A New Approach on Constant Angle Surfaces in E3
    Munteanu, Marian Ioan
    Nistor, Ana-Irina
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2009, 33 (02) : 169 - 178
  • [32] Minimal surfaces in S3 with constant contact angle
    Montes, Rodrigo Ristow
    Verderesi, Jose A.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2009, 157 (04): : 379 - 386
  • [33] Drop evaporation on solid surfaces: Constant contact angle mode
    Erbil, HY
    McHale, G
    Newton, MI
    [J]. LANGMUIR, 2002, 18 (07) : 2636 - 2641
  • [34] Constant Angle Surfaces in the Lorentzian Warped Product Manifold -I xf E2
    Dursun, Ugur
    Turgay, Nurettin Cenk
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (03)
  • [35] A NEW REPRESENTATION OF CONSTANT ANGLE SURFACES IN H2 x R WITH SPLIT QUATERNIONS
    Karakus, Siddika Ozkaldi
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (01): : 633 - 642
  • [36] SURFACES OF CONSTANT MEAN-CURVATURE WITH PRESCRIBED CONTACT-ANGLE
    BOHLEN, DS
    DAVIS, HT
    SCRIVEN, LE
    [J]. LANGMUIR, 1992, 8 (03) : 982 - 988
  • [37] MINIMAL-SURFACES WITH CONSTANT KAHLER ANGLE IN COMPLEX PROJECTIVE SPACES
    MO, XH
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) : 569 - 571
  • [38] Constant Angle Surfaces in S3(1) x R
    Chen, Daguang
    Chen, Gangyi
    Chen, Hang
    Dillen, Franki
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2012, 19 (02) : 289 - 304
  • [39] CURVATURE PINCHING THEOREM FOR MINIMAL-SURFACES WITH CONSTANT KAEHLER ANGLE IN COMPLEX PROJECTIVE SPACES .2.
    OGATA, T
    [J]. TOHOKU MATHEMATICAL JOURNAL, 1993, 45 (02) : 271 - 283
  • [40] Constant angle surfaces in the Lorentzian warped product manifold I xf 121
    Dursun, Ugur
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3171 - +