Detailed Seismic Hazard, Disaggregation and Sensitivity Analysis for the Indo-Gangetic Basin

被引:0
|
作者
Ketan Bajaj
P. Anbazhagan
机构
[1] Indian Institute of Science,
来源
关键词
Indo-Gangetic basin; seismicity parameters; disaggregation; sensitivity analysis; hazard analysis;
D O I
暂无
中图分类号
学科分类号
摘要
Seismic hazard in terms of peak ground acceleration (PGA) and spectral acceleration (SA) for the seismically active Indo-Gangetic Basin (IGB) has been computed using both a fault model and spatially smoothed-grid seismicity model. Seismicity parameters, viz. minimum magnitude, the maximum regional magnitude Mmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{\mathrm{max}}$$\end{document}, mean seismic activity rate λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, the slope of the frequency–magnitude Gutenberg–Richter relationship, and the β-value (bln(10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$bln(10)$$\end{document}), have been estimated spatially. The layered seismogenic source framework based on hypocentral depth distribution, i.e. 0–25, 25–70, and 70–180 km, for the smoothed-grid seismicity model has also been employed. The lowest λ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{4}$$\end{document} and λ5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda }_{5}$$\end{document} values for the IGB are 0.05 to 0.02 and 0.015 to 0.005, respectively, in the southern part of the IGB for hypocentral depth variation of 0–25 km. The IGB has a significant variation of seismicity in the entire stretch with noteworthy clustering in the northern side, which gradually decreases towards the south, and the spatial variability of the b-value and Mmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{\mathrm{max}}$$\end{document} are 0.65–1.15 and 5.0–8.4 Mw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{w}$$\end{document}, respectively. A ground-motion prediction equation has been selected and weighted by carrying out the efficacy test considering the past earthquakes. The disaggregation process is used for determining the spatial contribution of different magnitudes and distances for the whole IGB. Sensitivity analysis is used for examining the effect of various parameters. The PGA for the IGB varies from 0.06 to 0.54 g for 2% and 0.03 to 0.32 g for a 10% probability of exceedance in 50 years at bedrock condition. The developed average uniform hazard spectra in this study match well with the spectra derived from recorded ground motion. Based on the disaggregation process, dominant magnitude and distance are in the range of 4.7 to 6.0 Mw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{w}$$\end{document} and 15 to 75 km, respectively, in the case of PGA and change to 5.5–7.2 Mw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{w}$$\end{document} and 45 to 150 km in the case of 0.5 s and 5.8–7.5 Mw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M}_{w}$$\end{document} and 70 to 250 km in the case of 2.0 s. Sensitivity analysis suggested that increase in maximum magnitude and distance has an impact on hazard level over a longer period. This is the first time a detailed hazard analysis has been presented for the IGB.
引用
收藏
页码:1977 / 1999
页数:22
相关论文
共 50 条
  • [21] Microsatellite analysis of buffaloes of Indo-Gangetic Plains
    Joshi, Jyoti
    Salar, R. K.
    Banerjee, P.
    Gokhale, S. B.
    Upasna, S.
    Gaur, Uma
    Tantia, M. S.
    Vijh, R. K.
    INDIAN JOURNAL OF ANIMAL SCIENCES, 2012, 82 (11): : 1434 - 1437
  • [22] 3D seismic wave amplification in the Indo-Gangetic basin from spectral element simulations
    Jayalakshmi, S.
    Dhanya, J.
    Raghukanth, S. T. G.
    Mai, P. Martin
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2020, 129 (129)
  • [23] Seismic damage and loss estimation for central Indo-Gangetic Plains, India
    M. C. Raghucharan
    Surendra Nadh Somala
    Natural Hazards, 2018, 94 : 883 - 904
  • [24] The Great Boundary Fault in the Indo-Gangetic foreland basin: A geomorphological perspective
    Kashyap, Rajkumar
    Jaiswal, Manoj K.
    Pati, Pitambar
    GEOMORPHOLOGY, 2023, 443
  • [25] Assessment of Fractionated Aerosols at a Semiarid Region over the Indo-Gangetic Basin
    Singh, Rohini
    Gupta, Pratima
    Jangid, Ashok
    Sharma, Anshumala
    Kumar, Ranjit
    CLEAN-SOIL AIR WATER, 2019, 47 (04)
  • [26] Tectonic settings of Indo-Gangetic basin revealed from magnetotelluric data
    Singh, RP
    Singh, UK
    CURRENT SCIENCE, 1997, 73 (03): : 281 - 284
  • [27] Assessing Economic Impacts Of Climate Change And Adaptation In Indo-Gangetic Basin
    Singh, Harbir
    Subash, Nataraja
    Gangwar, Babooji
    Valdivia, Roberto
    Antle, John
    Baigorria, Guillermo
    AGRICULTURE AND CLIMATE CHANGE - ADAPTING CROPS TO INCREASED UNCERTAINTY (AGRI 2015), 2015, 29 : 229 - 230
  • [28] Seismic damage and loss estimation for central Indo-Gangetic Plains, India
    Raghucharan, M. C.
    Somala, Surendra Nadh
    NATURAL HAZARDS, 2018, 94 (02) : 883 - 904
  • [29] Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia
    Bonsor, H. C.
    MacDonald, A. M.
    Ahmed, K. M.
    Burgess, W. G.
    Basharat, M.
    Calow, R. C.
    Dixit, A.
    Foster, S. S. D.
    Gopal, K.
    Lapworth, D. J.
    Moench, M.
    Mukherjee, A.
    Rao, M. S.
    Shamsudduha, M.
    Smith, L.
    Taylor, R. G.
    Tucker, J.
    van Steenbergen, F.
    Yadav, S. K.
    Zahid, A.
    HYDROGEOLOGY JOURNAL, 2017, 25 (05) : 1377 - 1406
  • [30] Probable mixing state of aerosols in the Indo-Gangetic Basin, northern India
    Dey, Sagnik
    Tripathi, S. N.
    Mishra, S. K.
    GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (03)