Let Xε be a small perturbation Wishart process with values in the set of positive definite matrices of size m, i.e., the process Xε is the solution of stochastic differential equation with non-Lipschitz diffusion coefficient: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$dX_t^\varepsilon = \sqrt {\varepsilon X_t^\varepsilon } dB_t + dB'_t \sqrt {\varepsilon X_t^\varepsilon } + \rho I_m dt$$\end{document}, X0 = x, where B is an m×m matrix valued Brownian motion and B′ denotes the transpose of the matrix B. In this paper, we prove that \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left\{ {{{\left( {X_t^\varepsilon - X_t^0 } \right)} \mathord{\left/
{\vphantom {{\left( {X_t^\varepsilon - X_t^0 } \right)} {\sqrt {\varepsilon h^2 (\varepsilon )} ,\varepsilon > 0}}} \right.
\kern-\nulldelimiterspace} {\sqrt {\varepsilon h^2 (\varepsilon )} ,\varepsilon > 0}}} \right\}$$\end{document} satisfies a large deviation principle, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\left( {X_t^\varepsilon - X_t^0 } \right)} \mathord{\left/
{\vphantom {{\left( {X_t^\varepsilon - X_t^0 } \right)} {\sqrt \varepsilon }}} \right.
\kern-\nulldelimiterspace} {\sqrt \varepsilon }}$$\end{document} converges to a Gaussian process, where h(ɛ) → +∞ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sqrt \varepsilon h(\varepsilon ) \to 0$$\end{document} as ε → 0. A moderate deviation principle and a functional central limit theorem for the eigenvalue process of Xε are also obtained by the delta method.