The strong two-generator property in rings of integer-valued polynomials determined by finite sets

被引:0
|
作者
S. T. Chapman
A. Loper
W. W. Smith¶
机构
[1] Trinity University,
[2] Department of Mathematics,undefined
[3] 715 Stadium Drive,undefined
[4] San Antonio,undefined
[5] Texas 78212-7200,undefined
[6] USA,undefined
[7] e-mail: schapman@trinity.edu,undefined
[8] Ohio State University - Newark,undefined
[9] Department of Mathematics,undefined
[10] Newark,undefined
[11] Ohio 43055,undefined
[12] USA,undefined
[13] ¶ e-mail: lopera@math.mps.ohio-state.edu,undefined
[14] The University of North Carolina at Chapel Hill,undefined
[15] Department of Mathematics,undefined
[16] Chapel Hill,undefined
[17] North Carolina 27599-3250,undefined
[18] USA,undefined
[19] e-mail: wwsmith@math.unc.edu,undefined
来源
Archiv der Mathematik | 2002年 / 78卷
关键词
Nonempty Subset; Integral Domain; Ideal Domain; Dedekind Domain; Principal Ideal Domain;
D O I
暂无
中图分类号
学科分类号
摘要
Let D be an integral domain and E = {e1,..., ek} a finite nonempty subset of D. Then Int(E, D) has the strong two-generator property if and only if D is a Bezout domain. If D is a Dedekind domain which is not a principal ideal domain, then we characterize which elements of Int(E, D) are strong two-generators.
引用
收藏
页码:372 / 377
页数:5
相关论文
共 50 条