Mixed finite element methods for the Rosenau equation

被引:0
|
作者
Noureddine Atouani
Yousra Ouali
Khaled Omrani
机构
[1] Institut Supérieur des Sciences Appliquées et de Technologie de Sousse,
关键词
Rosenau equation; Mixed finite element methods; Completely discrete scheme; Existence; Uniqueness; Error estimates; 65N30; 65N12; 65N15;
D O I
暂无
中图分类号
学科分类号
摘要
Mixed finite element methods are applied to the Rosenau equation by employing splitting technique. The semi-discrete methods are derived using C0-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0-$$\end{document}piecewise linear finite elements in spatial direction. The existence of unique solutions of the semi-discrete and fully discrete Galerkin mixed finite element methods is proved, and error estimates are established in one space dimension. An extension to problem in two space variables is also discussed. It is shown that the Galerkin mixed finite finite element have the same rate of convergence as in the classical methods without requiring the LBB consistency condition. At last numerical experiments are carried out to support the theoretical claims.
引用
收藏
页码:393 / 420
页数:27
相关论文
共 50 条
  • [21] A DETAILED NUMERICAL STUDY ON GENERALIZED ROSENAU-KDV EQUATION WITH FINITE ELEMENT METHOD
    Karakoc, Seydi Battal Gazi
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (04): : 837 - 852
  • [22] Mixed finite element-finite volume methods
    Zine Dine, Khadija
    Achtaich, Naceur
    Chagdali, Mohamed
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) : 385 - 410
  • [23] Coupling of mixed finite element methods and boundary element methods in elasticity
    Funken, SA
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2000, 80 : S833 - S834
  • [24] STABILITY, CONVERGENCE, AND ACCURACY OF STABILIZED FINITE ELEMENT METHODS FOR THE WAVE EQUATION IN MIXED FORM
    Badia, Santiago
    Codina, Ramon
    Espinoza, Hector
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 1729 - 1752
  • [25] Postprocessing Mixed Finite Element Methods For Solving Cahn-Hilliard Equation: Methods and Error Analysis
    Wang, Wansheng
    Chen, Long
    Zhou, Jie
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (02) : 724 - 746
  • [26] Finite element methods for the parabolic equation with interfaces
    Dougalis, VA
    Kampanis, NA
    [J]. JOURNAL OF COMPUTATIONAL ACOUSTICS, 1996, 4 (01) : 55 - 88
  • [27] A numerical study using finite element method for generalized Rosenau-Kawahara-RLW equation
    Karakoc, Seydi Battal Gazi
    Bhowmik, Samir Kumar
    Gao, Fuzheng
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2019, 7 (03): : 319 - 333
  • [28] Mixed finite element methods for the Oseen problem
    Mohamed Farhloul
    [J]. Numerical Algorithms, 2020, 84 : 1431 - 1442
  • [29] Control‐volume mixed finite element methods
    Z. Cai
    J.E. Jones
    S.F. McCormick
    T.F. Russell
    [J]. Computational Geosciences, 1997, 1 (3-4) : 289 - 315
  • [30] Mixed finite element methods for the Oseen problem
    Farhloul, Mohamed
    [J]. NUMERICAL ALGORITHMS, 2020, 84 (04) : 1431 - 1442