Lagrangianity for log extendable overconvergent F-isocrystals

被引:0
|
作者
Daniel Caro
机构
[1] Université de Caen,Laboratoire de Mathématiques Nicolas Oresme
来源
Mathematische Zeitschrift | 2017年 / 287卷
关键词
Frobenius Structure; Complete Discrete Valuation Ring; Laumon; Betti Number Estimate; Semistable Reduction Theorem;
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of Berthelot’s theory of arithmetic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}-modules, we prove that Berthelot’s characteristic variety associated with a holonomic D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}$$\end{document}-modules endowed with a Frobenius structure has pure dimension. As an application, we get the lagrangianity of the characteristic variety of a log extendable overconvergent F-isocrystal.
引用
收藏
页码:325 / 339
页数:14
相关论文
共 50 条