The monodromy groups of lisse sheaves and overconvergent F-isocrystals

被引:0
|
作者
Marco D’Addezio
机构
[1] Max-Planck-Institut für Mathematik,
来源
Selecta Mathematica | 2020年 / 26卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
It has been proven by Serre, Larsen–Pink and Chin, that over a smooth curve over a finite field, the monodromy groups of compatible semi-simple pure lisse sheaves have “the same” π0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _0$$\end{document} and neutral component. We generalize their results to compatible systems of semi-simple lisse sheaves and overconvergent F-isocrystals over arbitrary smooth varieties. For this purpose, we extend the theorem of Serre and Chin on Frobenius tori to overconvergent F-isocrystals. To put our results into perspective, we briefly survey recent developments of the theory of lisse sheaves and overconvergent F-isocrystals. We use the Tannakian formalism to make explicit the similarities between the two types of coefficient objects.
引用
收藏
相关论文
共 50 条