Tensor products of primitive modules

被引:0
|
作者
A. Lucchini
M. C. Tamburini
机构
[1] Dipartimento di Matematica,
[2] Universitá degli Studi di Brescia,undefined
[3] Via Branze,undefined
[4] 25123 Brescia,undefined
[5] Italy,undefined
[6] lucchini@bsing.ing.unibs.it,undefined
[7] Dipartimento di Matematica e Fisica,undefined
[8] Universitá Cattolica del Sacro Cuore,undefined
[9] Via Trieste 17,undefined
[10] 25121 Brescia,undefined
[11] Italy,undefined
[12] tambur@dmf.bs.unicatt.it,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Tensor Product; Simple Group; Complex Field; Finite Simple Group; Primitive Module;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a field and, for i = 1,2, let Gi be a group and Vi an irreducible, primitive, finite dimensional FGi-module. Set G = G1\times G2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $V=V_1\otimes _F V_2$\end{document}. The main aim of this paper is to determine sufficient conditions for V to be primitive as a G-module. In particular this turns out to be the case if V1 and V2 are absolutely irreducible and V1 is absolutely quasi-primitive. Thus we extend a result of N.S. Heckster, who has shown that V is primitive whenever G is finite and F is the complex field. We also give a characterization of absolutely quasi-primitive modules. Ultimately, our results rely on the classification of finite simple groups.
引用
收藏
页码:149 / 154
页数:5
相关论文
共 50 条
  • [31] Irreducible Virasoro modules from tensor products (II)
    Tan, Haijun
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2013, 394 : 357 - 373
  • [32] Local Weyl modules and cyclicity of tensor products for Yangians
    Tan, Yilan
    Guay, Nicolas
    JOURNAL OF ALGEBRA, 2015, 432 : 228 - 251
  • [33] Unique Factorization for Tensor Products of Parabolic Verma Modules
    K. N. Raghavan
    V. Sathish Kumar
    R. Venkatesh
    Sankaran Viswanath
    Algebras and Representation Theory, 2024, 27 : 1203 - 1220
  • [34] TENSOR-PRODUCTS AND Q-CROSSED MODULES
    ELLIS, GJ
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 243 - 258
  • [35] Irreducibility criterion for tensor products of Yangian evaluation modules
    Molev, AI
    DUKE MATHEMATICAL JOURNAL, 2002, 112 (02) : 307 - 341
  • [36] Unique Factorization for Tensor Products of Parabolic Verma Modules
    Raghavan, K. N.
    Kumar, V. Sathish
    Venkatesh, R.
    Viswanath, Sankaran
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (02) : 1203 - 1220
  • [37] Meta-projective Modules, Tensor Products and Limits
    冯良贵
    数学季刊, 1997, (01) : 61 - 64
  • [38] Tensor products of strongly graded vertex algebras and their modules
    Yang, Jinwei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) : 348 - 363
  • [39] Endomorphism rings and tensor products of linearly compact modules
    Faith, C
    Herbera, D
    COMMUNICATIONS IN ALGEBRA, 1997, 25 (04) : 1215 - 1255
  • [40] TENSOR PRODUCTS OF MODULES OVER A CERTAIN CLASS OF QUANTUM DOUBLES
    Burciu, S.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (11) : 4240 - 4254