Tensor products of primitive modules

被引:0
|
作者
A. Lucchini
M. C. Tamburini
机构
[1] Dipartimento di Matematica,
[2] Universitá degli Studi di Brescia,undefined
[3] Via Branze,undefined
[4] 25123 Brescia,undefined
[5] Italy,undefined
[6] lucchini@bsing.ing.unibs.it,undefined
[7] Dipartimento di Matematica e Fisica,undefined
[8] Universitá Cattolica del Sacro Cuore,undefined
[9] Via Trieste 17,undefined
[10] 25121 Brescia,undefined
[11] Italy,undefined
[12] tambur@dmf.bs.unicatt.it,undefined
来源
Archiv der Mathematik | 2001年 / 77卷
关键词
Tensor Product; Simple Group; Complex Field; Finite Simple Group; Primitive Module;
D O I
暂无
中图分类号
学科分类号
摘要
Let F be a field and, for i = 1,2, let Gi be a group and Vi an irreducible, primitive, finite dimensional FGi-module. Set G = G1\times G2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $V=V_1\otimes _F V_2$\end{document}. The main aim of this paper is to determine sufficient conditions for V to be primitive as a G-module. In particular this turns out to be the case if V1 and V2 are absolutely irreducible and V1 is absolutely quasi-primitive. Thus we extend a result of N.S. Heckster, who has shown that V is primitive whenever G is finite and F is the complex field. We also give a characterization of absolutely quasi-primitive modules. Ultimately, our results rely on the classification of finite simple groups.
引用
收藏
页码:149 / 154
页数:5
相关论文
共 50 条