Classification of lemon quality using hybrid model based on Stacked AutoEncoder and convolutional neural network

被引:0
|
作者
Esra Kavalcı Yılmaz
Kemal Adem
Serhat Kılıçarslan
Hatice Aktaş Aydın
机构
[1] Sivas University of Science and Technology,Department of Computer Engineering
[2] Bandirma Onyedi Eylul University,Department of Software Engineering
来源
关键词
Lemon Quality; Deep Learning; SAE; Dimension Reduction;
D O I
暂无
中图分类号
学科分类号
摘要
Agricultural product quality assessment is crucial for determining marketability and managing waste. It helps ensure that products meet industry standards and consumer expectations, leading to increased sales and reduced spoilage. It is important for growers, processors, and distributors to have systems in place to ensure the quality of their agricultural products. When the literature is examined, it is seen that artificial intelligence is used for classification processes of many agricultural products. Many studies carried out in this context are based on processing images of agricultural products with various deep learning and machine learning methods and classifying their quality according to these results. In this study, data sets consisting of statistical properties obtained by GLCM, Color Space, and Morphological methods were combined for the first time in this study and used as a single data set. In addition, hybrid classification processes were carried out by applying dimension reduction methods, such as Stacked AutoEncoder, ReliefF, and deep learning methods, such as CNN, SVC, Ridge Classifier, and Subspace Discriminant, to the created data set. When morphological features were given as input to ML algorithms for normal classification, the SAE–CNN hybrid model we proposed in the study achieved a success above the literature with 98.96% accuracy using 32 features. The experimental results demonstrated the effectiveness of the proposed lemon classification system.
引用
收藏
页码:1655 / 1667
页数:12
相关论文
共 50 条
  • [21] Stacked autoencoder based deep random vector functional link neural network for classification
    Katuwal, Rakesh
    Suganthan, P. N.
    APPLIED SOFT COMPUTING, 2019, 85
  • [22] Classification of Alzheimer's Disease Using Stacked Sparse Convolutional Autoencoder
    Baydargil, Husnu Baris
    Park, Jang-Sik
    Kang, Do-Young
    2019 19TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2019), 2019, : 891 - 895
  • [23] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Hameed, Ahmad
    Umer, Muhammad
    Hafeez, Umair
    Mustafa, Hassan
    Sohaib, Ahmed
    Siddique, Muhammad Abubakar
    Madni, Hamza Ahmad
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3551 - 3565
  • [24] Skin lesion classification in dermoscopic images using stacked Convolutional Neural Network
    Ahmad Hameed
    Muhammad Umer
    Umair Hafeez
    Hassan Mustafa
    Ahmed Sohaib
    Muhammad Abubakar Siddique
    Hamza Ahmad Madni
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 : 3551 - 3565
  • [25] Detection and classification of epilepsy using hybrid convolutional neural network
    Sabarivani, A.
    Ramadevi, R.
    CONCURRENT ENGINEERING-RESEARCH AND APPLICATIONS, 2022, 30 (03): : 253 - 261
  • [26] Detection and classification of arrhythmia type using hybrid model of LSTM with convolutional neural network
    A. Anbarasi
    T. Ravi
    Applied Nanoscience, 2023, 13 : 3435 - 3445
  • [27] Detection and classification of arrhythmia type using hybrid model of LSTM with convolutional neural network
    Anbarasi, A.
    Ravi, T.
    APPLIED NANOSCIENCE, 2022, 13 (5) : 3435 - 3445
  • [28] A Hybrid Model for Classification of Biomedical Data using Feature Filtering and a Convolutional Neural Network
    Salesi, Sadegh
    Alani, Ali A.
    Cosma, Georgina
    2018 FIFTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORKS ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2018, : 226 - 232
  • [29] A Hybrid Convolutional Neural Network Model Based on Different Evolution for Medical Image Classification
    Hu, Yinyin
    Zhang, Xiaoxia
    Yang, Jiao
    Fu, Shuai
    ENGINEERING LETTERS, 2022, 30 (01) : 168 - 177
  • [30] Epileptic EEG signal classification using an improved VMD-based convolutional stacked autoencoder
    Parija, Sebamai
    Dash, Pradipta Kishore
    Bisoi, Ranjeeta
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (01)