Human and object detection using Hybrid Deep Convolutional Neural Network

被引:0
|
作者
P. Mukilan
Wogderess Semunigus
机构
[1] Bule Hora University,Department of Electrical and Computer Engineering, College of Engineering and Technology
来源
关键词
Object detection; Deep learning; Emperor; Kernel parameters; CNN; Firefly algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, human and object detection has increased research in different real-time applications. Due to improvement in the field of deep learning, various methods have been designed for human, object detection and recognition. Hence, Hybrid Deep Convolutional Neural Network (HDCNN) is developed for human and object detection from the video frames. The HDCNN is a combination of Convolutional Neural Network (CNN) and Emperor Penguin Optimization (EPO). Here, EPO is utilized to increase the system parameters of the CNN structure. Initially, pre-processing is applied to eliminate the noise presented in the image and image quality is enhanced. Here, the Gaussian filter is used for the background subtraction in the images. The three different types of databases are considered to validate the proposed methodology. The proposed HDCNN method is tested in MATLAB and compared with existing methods like Deep Neural Network (DNN), CNN and CNN-Firefly Algorithm (FA), respectively. The proposed method is justified with the statistical measurements like accuracy, precision, recall and F-Measure, respectively.
引用
下载
收藏
页码:1913 / 1923
页数:10
相关论文
共 50 条
  • [41] Object Detection and Localization Using Sparse-FCM and Optimization-driven Deep Convolutional Neural Network
    Raghu, A. Francis Alexander
    Ananth, J. P.
    COMPUTER JOURNAL, 2022, 65 (05): : 1225 - 1241
  • [42] ThinNet: An Efficient Convolutional Neural Network for Object Detection
    Cao, Sen
    Liu, Yazhou
    Zhou, Changxin
    Sun, Quansen
    Pongsak, Lasang
    Shen, Sheng Mei
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 836 - 841
  • [43] A Review of Object Detection Based on Convolutional Neural Network
    Wang Zhiqiang
    Liu Jun
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 11104 - 11109
  • [44] Summary of Object Detection Based on Convolutional Neural Network
    Wang Xuejiao
    Zhi Min
    ELEVENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2019), 2020, 11373
  • [45] A Lightweight Convolutional Neural Network for Salient Object Detection
    Fei, Fengchang
    Liu, Wei
    Shu, Lei
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2024, 31 (04): : 1402 - 1410
  • [46] Event Detection and Classification Using Deep Compressed Convolutional Neural Network
    Swapnika, K.
    Vasumathi, D.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (12) : 312 - 322
  • [47] Detection of Alzheimer's Disease Using Deep Convolutional Neural Network
    Kaur, Swapandeep
    Gupta, Sheifali
    Singh, Swati
    Gupta, Isha
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (03)
  • [48] Brain Hemorrhage Detection Using Deep Learning: Convolutional Neural Network
    Navadia, Nipun R.
    Kaur, Gurleen
    Bhardwaj, Harshit
    INFORMATION SYSTEMS AND MANAGEMENT SCIENCE, ISMS 2021, 2023, 521 : 565 - 570
  • [49] Accurate brain tumor detection using deep convolutional neural network
    Khan, Md Saikat Islam
    Rahman, Anichur
    Debnath, Tanoy
    Karim, Md Razaul
    Nasir, Mostofa Kamal
    Band, Shahab S.
    Mosavi, Amir
    Dehzangi, Iman
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 4733 - 4745
  • [50] Low Cost Defect Detection Using a Deep Convolutional Neural Network
    Andrei-Alexandru, Tulbure
    Dulf, Eva Henrietta
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS (AQTR), 2020, : 421 - 425