Human and object detection using Hybrid Deep Convolutional Neural Network

被引:0
|
作者
P. Mukilan
Wogderess Semunigus
机构
[1] Bule Hora University,Department of Electrical and Computer Engineering, College of Engineering and Technology
来源
关键词
Object detection; Deep learning; Emperor; Kernel parameters; CNN; Firefly algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In recent years, human and object detection has increased research in different real-time applications. Due to improvement in the field of deep learning, various methods have been designed for human, object detection and recognition. Hence, Hybrid Deep Convolutional Neural Network (HDCNN) is developed for human and object detection from the video frames. The HDCNN is a combination of Convolutional Neural Network (CNN) and Emperor Penguin Optimization (EPO). Here, EPO is utilized to increase the system parameters of the CNN structure. Initially, pre-processing is applied to eliminate the noise presented in the image and image quality is enhanced. Here, the Gaussian filter is used for the background subtraction in the images. The three different types of databases are considered to validate the proposed methodology. The proposed HDCNN method is tested in MATLAB and compared with existing methods like Deep Neural Network (DNN), CNN and CNN-Firefly Algorithm (FA), respectively. The proposed method is justified with the statistical measurements like accuracy, precision, recall and F-Measure, respectively.
引用
收藏
页码:1913 / 1923
页数:10
相关论文
共 50 条
  • [1] Human and object detection using Hybrid Deep Convolutional Neural Network
    Mukilan, P.
    Semunigus, Wogderess
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1913 - 1923
  • [2] Object Detection Using Deep Convolutional Neural Networks
    Qian, Huimin
    Xu, Jiawei
    Zhou, Jun
    [J]. 2018 CHINESE AUTOMATION CONGRESS (CAC), 2018, : 1151 - 1156
  • [3] Dangerous Object Detection by Deep Learning of Convolutional Neural Network
    Yang Senlin
    Sun Jing
    Duan Yingni
    Li Xilong
    Zhang Bianlian
    [J]. SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [4] Transparent Object Detection Using Convolutional Neural Network
    Khaing, May Phyo
    Masayuki, Mukunoki
    [J]. BIG DATA ANALYSIS AND DEEP LEARNING APPLICATIONS, 2019, 744 : 86 - 93
  • [5] ORIENTATION ROBUST OBJECT DETECTION IN AERIAL IMAGES USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhu, Haigang
    Chen, Xiaogang
    Dai, Weiqun
    Fu, Kun
    Ye, Qixiang
    Jiao, Jianbin
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3735 - 3739
  • [6] IMPROVED OBJECT DETECTION IN VIDEO SURVEILLANCE USING DEEP CONVOLUTIONAL NEURAL NETWORK LEARNING
    Dhiyanesh, B.
    Kanna, Rajesh K.
    Rajkumar, S.
    Radha, R.
    [J]. PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 913 - 920
  • [7] Detection of Potholes Using a Deep Convolutional Neural Network
    Suong, Lim Kuoy
    Jangwoo, Kwon
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2018, 24 (09) : 1244 - 1257
  • [8] Object detection and estimation: A hybrid image segmentation technique using convolutional neural network model
    Sundaram, Aarthi
    Sakthivel, Chitrakala
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (21):
  • [9] Multi-class object detection system using hybrid convolutional neural network architecture
    Borade, Jay Laxman
    Lakshmi, Muddana A.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 31727 - 31751
  • [10] Multi-class object detection system using hybrid convolutional neural network architecture
    Jay Laxman Borade
    Muddana A Lakshmi
    [J]. Multimedia Tools and Applications, 2022, 81 : 31727 - 31751