Controlling gene expression with deep generative design of regulatory DNA

被引:0
|
作者
Jan Zrimec
Xiaozhi Fu
Azam Sheikh Muhammad
Christos Skrekas
Vykintas Jauniskis
Nora K. Speicher
Christoph S. Börlin
Vilhelm Verendel
Morteza Haghir Chehreghani
Devdatt Dubhashi
Verena Siewers
Florian David
Jens Nielsen
Aleksej Zelezniak
机构
[1] Chalmers University of Technology,Department of Biology and Biological Engineering
[2] National Institute of Biology,Department of Biotechnology and Systems Biology
[3] Chalmers University of Technology,Department of Computer Science and Engineering
[4] Biomatter Designs,Institute of Biotechnology, Life Sciences Centre
[5] BioInnovation Institute,Randall Centre for Cell & Molecular Biophysics
[6] Vilnius University,undefined
[7] King’s College London,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Design of de novo synthetic regulatory DNA is a promising avenue to control gene expression in biotechnology and medicine. Using mutagenesis typically requires screening sizable random DNA libraries, which limits the designs to span merely a short section of the promoter and restricts their control of gene expression. Here, we prototype a deep learning strategy based on generative adversarial networks (GAN) by learning directly from genomic and transcriptomic data. Our ExpressionGAN can traverse the entire regulatory sequence-expression landscape in a gene-specific manner, generating regulatory DNA with prespecified target mRNA levels spanning the whole gene regulatory structure including coding and adjacent non-coding regions. Despite high sequence divergence from natural DNA, in vivo measurements show that 57% of the highly-expressed synthetic sequences surpass the expression levels of highly-expressed natural controls. This demonstrates the applicability and relevance of deep generative design to expand our knowledge and control of gene expression regulation in any desired organism, condition or tissue.
引用
收藏
相关论文
共 50 条
  • [31] REGULATORY GENE INTERACTIONS CONTROLLING DISCOIDIN LECTIN EXPRESSION IN DICTYOSTELIUM-DISCOIDEUM
    ALEXANDER, S
    LEONE, S
    OSTERMEYER, E
    SYDOW, LM
    DEVELOPMENTAL GENETICS, 1990, 11 (5-6): : 418 - 424
  • [32] Regulatory Function of Histone Modifications in Controlling Rice Gene Expression and Plant Growth
    Zhou, Dao-Xiu
    Hu, Yongfeng
    RICE, 2010, 3 (2-3) : 103 - 111
  • [33] Mapping regulatory variants controlling gene expression in drought response and tolerance in maize
    Liu, Shengxue
    Li, Cuiping
    Wang, Hongwei
    Wang, Shuhui
    Yang, Shiping
    Liu, Xiaohu
    Yan, Jianbing
    Li, Bailin
    Beatty, Mary
    Zastrow-Hayes, Gina
    Song, Shuhui
    Qin, Feng
    GENOME BIOLOGY, 2020, 21 (01)
  • [34] Predicting gene regulatory interactions based on spatial gene expression data and deep learning
    Yang, Yang
    Fang, Qingwei
    Shen, Hong-Bin
    PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (09)
  • [35] Deep generative models for peptide design
    Wan, Fangping
    Kontogiorgos-Heintz, Daphne
    de la Fuente-Nunez, Cesar
    DIGITAL DISCOVERY, 2022, 1 (03): : 195 - 208
  • [36] Design of orthogonal regulatory systems for modulating gene expression in plants
    Michael S. Belcher
    Khanh M. Vuu
    Andy Zhou
    Nasim Mansoori
    Amanda Agosto Ramos
    Mitchell G. Thompson
    Henrik V. Scheller
    Dominique Loqué
    Patrick M. Shih
    Nature Chemical Biology, 2020, 16 : 857 - 865
  • [37] Design of orthogonal regulatory systems for modulating gene expression in plants
    Belcher, Michael S.
    Vuu, Khanh M.
    Zhou, Andy
    Mansoori, Nasim
    Ramos, Amanda Agosto
    Thompson, Mitchell G.
    Scheller, Henrik, V
    Loque, Dominique
    Shih, Patrick M.
    NATURE CHEMICAL BIOLOGY, 2020, 16 (08) : 857 - +
  • [38] A method for design of expression tracking controllers for gene regulatory networks
    Mori, Yoshihiro
    Kuroe, Yasuaki
    Ingalls, Brian
    IFAC PAPERSONLINE, 2019, 52 (26): : 135 - 142
  • [39] Deep generative modeling for protein design
    Strokach, Alexey
    Kim, Philip M.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 72 : 226 - 236
  • [40] Generative Deep Learning in Architectural Design
    Newton D.
    Tech. Arch. Des., 2019, 2 (176-189): : 176 - 189