Predicting Oxidation Behavior of Multi-Principal Element Alloys by Machine Learning Methods

被引:0
|
作者
Jose A. Loli
Amish R. Chovatiya
Yining He
Zachary W. Ulissi
Maarten P. de Boer
Bryan A. Webler
机构
[1] Carnegie Mellon University,Department of Mechanical Engineering
[2] Carnegie Mellon University,Department of Chemical Engineering
[3] Carnegie Mellon University,Department of Material Science Engineering
来源
Oxidation of Metals | 2022年 / 98卷
关键词
High-temperature oxidation; Machine learning; Multi-principal element alloys; CALPHAD;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we operate on a small dataset available from the technical literature to predict the oxidation-induced mass change at 1000 °C of thousands of new alloy compositions using “Tree-based Pipeline Optimization Tool” , an automated machine learning (ML) method. The ML pipeline we develop is trained on the log10 of the mass change per unit area. This yields a mean absolute error of 0.34 on the test set’s values, which span 3.5 decades. With additional insights from thermodynamic simulations, a set of seven alloys is selected, manufactured, and characterized. Of these, the oxidation behavior of five alloys is well-predicted by the ML-based model, while results for two alloys show orders of magnitude deviations from predictions. The results show that ML-based methods can be useful for predicting composition-dependent oxidation behavior, despite its many complexities.
引用
收藏
页码:429 / 450
页数:21
相关论文
共 50 条
  • [31] Review: Multi-principal element alloys by additive manufacturing
    Chenze Li
    Michael Ferry
    Jamie J. Kruzic
    Xiaopeng Li
    Journal of Materials Science, 2022, 57 : 9903 - 9935
  • [32] Controlling the corrosion resistance of multi-principal element alloys
    Scully, John R.
    Inman, Samuel B.
    Gerard, Angela Y.
    Taylor, Christopher D.
    Windl, Wolfgang
    Schreiber, Daniel K.
    Lu, Pin
    Saal, James E.
    Frankel, Gerald S.
    SCRIPTA MATERIALIA, 2020, 188 (188) : 96 - 101
  • [33] Refractory multi-principal element alloys MoxNbTiZry: Microstructure, mechanical properties and oxidation resistance
    Tang, Ye
    Xie, Zhixiong
    Yang, Tao
    Peng, Youhang
    Liu, Yushuai
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2025, 130
  • [34] Support Vector Machine-Based Phase Prediction of Multi-Principal Element Alloys
    Nguyen Hai Chau
    Kubo, Masatoshi
    Le Viet Hai
    Yamamoto, Tomoyuki
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2023, 10 (01) : 101 - 116
  • [35] A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys
    Kyungtae Lee
    Mukil V. Ayyasamy
    Yangfeng Ji
    Prasanna V. Balachandran
    Scientific Reports, 12
  • [36] A comparison of explainable artificial intelligence methods in the phase classification of multi-principal element alloys
    Lee, Kyungtae
    Ayyasamy, Mukil V.
    Ji, Yangfeng
    Balachandran, Prasanna V.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [37] Localized Corrosion Behavior of Non-Equiatomic NiFeCrMnCo Multi-Principal Element Alloys
    Sahu, Sarita
    Swanson, Orion J.
    Li, Tianshu
    Gerard, Angela Y.
    Scully, John R.
    Frankel, Gerald S.
    ELECTROCHIMICA ACTA, 2020, 354
  • [38] Revealing the oxidation behavior of AlCrxFeNi lightweight multi-principal element alloys via experimental and first-principles calculations
    Kang, K. W.
    Li, A. X.
    Zhang, J. S.
    Xu, M. K.
    Huang, D.
    Che, C. N.
    Liu, S. K.
    Jiang, Y. T.
    Li, Y. Q.
    Li, G.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [39] Decoding the hidden dynamics of super-Arrhenius hydrogen diffusion in multi-principal element alloys via machine learning
    Shuang, Fei
    Ji, Yucheng
    Wei, Zixiong
    Dong, Chaofang
    Gao, Wei
    Laurenti, Luca
    Dey, Poulumi
    ACTA MATERIALIA, 2025, 289
  • [40] Multi-principal element alloys for fast reactor cladding applications
    Beausoleil Ii, G. L.
    Curnutt, B.
    Moorehead, M.
    Bascom, A.
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2025, 57 (04)