Continuous Flow Process for Cr(VI) Removal from Aqueous Solutions Using Resin Supported Zero-Valent Iron

被引:0
|
作者
A. Toli
Ch. Mystrioti
A. Xenidis
N. Papassiopi
机构
[1] National Technical University of Athens,Sch. of Mining and Metallurgical Eng.
关键词
nZVI nanocomposite; Macroreticular resin support; Chromate reduction; Continuous flow tests;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of the present study was to evaluate the performance of a nanocomposite material consisting of nano zero valent iron and a cation exchange resin, for the reduction of chromate, by conducting column tests. A cationic resin, Amberlyst 15, was selected as porous host material. The synthesis of the nanocomposite material (R-nFe) was carried out using Green Tea extract to obtain the reduction of adsorbed Fe(III) to the elemental state Fe(0). Three column tests were implemented with different dimensions, corresponding to variable contact times between the aqueous solution and the resin beads loaded with Fe(0), namely 168, 744 and 1260 s respectively for columns I, II and III. The results indicated that the removal of Cr(VI) follows a first order kinetic law with a chemical constant equal to 0.0526 min−1 (8.8 × 10–4 s−1).
引用
收藏
页码:409 / 414
页数:5
相关论文
共 50 条
  • [21] Removal of Cr(VI) from wastewater by supported nanoscale zero-valent iron on granular activated carbon
    Fu, Fenglian
    Han, Weijiang
    Huang, Chijun
    Tang, Bing
    Hu, Min
    DESALINATION AND WATER TREATMENT, 2013, 51 (13-15) : 2680 - 2686
  • [22] Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    Jiang, Yufeng
    Zhang, Jian
    RSC ADVANCES, 2020, 10 (64) : 39217 - 39225
  • [23] Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer
    Daoud, Waseem
    Ebadi, Taghi
    Fahimifar, Ahmad
    WATER SCIENCE AND TECHNOLOGY, 2015, 71 (05) : 667 - 674
  • [24] Phosphate removal from aqueous solutions by nanoscale zero-valent iron
    Wu, Donglei
    Shen, Yanhong
    Ding, Aqiang
    Qiu, Mengyu
    Yang, Qi
    Zheng, Shuangshuang
    ENVIRONMENTAL TECHNOLOGY, 2013, 34 (18) : 2663 - 2669
  • [25] Removal of U(VI) from aqueous solution by nanoscale zero-valent iron
    Li, X.-Y., 1600, Atomic Energy Press (34):
  • [26] Nano zero-valent iron/montmorillonite composite for the removal of Cr(VI) from aqueous solutions: Characterization, performance, and mechanistic insights
    Shi, Yan
    Wang, Xin
    Zhong, Songtao
    Chen, Weiwei
    Feng, Changping
    Yang, Shipeng
    APPLIED CLAY SCIENCE, 2024, 253
  • [27] Removal of Cr(VI) by a simply prepared biochar-supported nanoscale zero-valent iron
    Cao, Chun-Yan
    Chen, Si-Lin
    Wan, Xin
    Wang, Min
    Song, Zhi-Guo
    Zhao, Shuang
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2022, 97 (10) : 2739 - 2746
  • [28] Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar
    Zhang, Yuting
    Jiao, Xinqian
    Liu, Na
    Lv, Jing
    Yang, Yadong
    CHEMOSPHERE, 2020, 245
  • [29] Performance and mechanism of Cr(VI) removal by resin-supported nanoscale zero-valent iron (nZVI): role of nZVI distribution
    Wang, Yuan
    Song, Yaqin
    Shi, Chenfei
    Shang, Jingge
    Chen, Jianqiu
    Du, Qiong
    DESALINATION AND WATER TREATMENT, 2019, 166 : 344 - 352
  • [30] Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites
    Yao Song
    Liancheng Wang
    Baoliang Lv
    Guozhang Chang
    Weizhou Jiao
    Youzhi Liu
    Environmental Science and Pollution Research, 2020, 27 : 7015 - 7024