Classification of quasigroups by random walk on torus

被引:5
|
作者
Markovski S. [1 ]
Gligoroski D. [1 ]
Markovski J. [1 ]
机构
[1] Institute of Informatics, Faculty of Sciences, Skopje
关键词
Quasigroup transformation; Random walk; Χ[!sup]2[!/sup]-test;
D O I
10.1007/BF02935788
中图分类号
学科分类号
摘要
Quasigroups are algebraic structures closely related to Latin squares which have many different applications. There are several classifications of quasigroups based on their algebraic properties. In this paper we propose another classification based on the properties of strings obtained by specific quasigroup transformations. More precisely, in our research we identified some quasigroup transformations which can be applied to arbitrary strings to produce pseudo random sequences. We performed tests for randomness of the obtained pseudo-random sequences by random walks on torus. The randomness tests provided an empirical classification of quasigroups. © 2005 Korean Society for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:57 / 75
页数:18
相关论文
共 50 条
  • [21] On the classification of functional equations on quasigroups
    Sokhats'kyi F.M.
    Ukrainian Mathematical Journal, 2004, 56 (9) : 1499 - 1508
  • [22] A Combinatorial Classification of Finite Quasigroups
    I. P. Mishutushkin
    Algebra and Logic, 2019, 57 : 463 - 477
  • [23] Study on the random walk classification algorithm of polyant colony
    Qiu, Wenhai
    OPEN COMPUTER SCIENCE, 2022, 12 (01): : 378 - 388
  • [24] Classification of imbalanced dataset based on random walk model
    Wang Y.
    Qiao P.
    Sun G.
    Fan K.
    Zeng X.
    Revue d'Intelligence Artificielle, 2019, 33 (02): : 89 - 95
  • [25] Random Walk on the Range of Random Walk
    David A. Croydon
    Journal of Statistical Physics, 2009, 136 : 349 - 372
  • [26] A random walk on a random walk path
    Grill, K
    ASYMPTOTIC METHODS IN PROBABILITY AND STATISTICS: A VOLUME IN HONOUR OF MIKLOS CSORGO, 1998, : 235 - 242
  • [27] EIGENMODES OF A RANDOM-WALK ON A 2D LATTICE TORUS WITH ONE TRAP
    TORNEY, DC
    TRANSPORT THEORY, INVARIANT IMBEDDING, AND INTEGRAL EQUATIONS: PROCEEDINGS IN HONOR OF G M WINGS 65TH BIRTHDAY, 1989, 115 : 237 - 246
  • [28] Random Walk on the Range of Random Walk
    Croydon, David A.
    JOURNAL OF STATISTICAL PHYSICS, 2009, 136 (02) : 349 - 372
  • [29] RANDOM-WALK ON A RANDOM-WALK
    KEHR, KW
    KUTNER, R
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1982, 110 (03) : 535 - 549
  • [30] CLASSIFICATION OF A RANDOM-WALK DEFINED ON A FINITE MARKOV CHAIN
    NEWBOULD, M
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1973, 26 (02): : 95 - 104