Complexity analysis and numerical implementation of a full-Newton step interior-point algorithm for LCCO

被引:0
|
作者
Mohamed Achache
Moufida Goutali
机构
[1] Université Ferhat Abbas de Sétif1,Laboratoire de Mathématiques Fondamentales et Numériques
[2] Université Ferhat Abbas de Sétif1,Département de Mathématiques, Faculté des Sciences
来源
Numerical Algorithms | 2015年 / 70卷
关键词
Linearly constrained convex optimization; Interior point methods; Short-step primal-dual algorithms; Complexity of algorithms; 90C25; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present a primal-dual interior point algorithm for linearly constrained convex optimization (LCCO). The algorithm uses only full-Newton step to update iterates with an appropriate proximity measure for controlling feasible iterations near the central path during the solution process. The favorable polynomial complexity bound for the algorithm with short-step method is obtained, namely O(nlogn𝜖)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O(\sqrt {n}\log \frac {n}{\epsilon })$\end{document} which is as good as the linear and convex quadratic optimization analogue. Numerical results are reported to show the efficiency of the algorithm.
引用
收藏
页码:393 / 405
页数:12
相关论文
共 50 条
  • [41] A Full-Newton Step Interior-point Method Based on a Class of Specific Algebra Transformation
    Kheirfam, Behrouz
    Nasrollahi, Afsaneh
    FUNDAMENTA INFORMATICAE, 2018, 163 (04) : 325 - 337
  • [42] A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function
    Zhang Lipu
    Bai Yanqin
    Xu Yinghong
    NUMERICAL ALGORITHMS, 2012, 61 (01) : 57 - 81
  • [43] A full-Newton step infeasible interior-point algorithm for monotone LCP based on a locally-kernel function
    Zhang Lipu
    Bai Yanqin
    Xu Yinghong
    Numerical Algorithms, 2012, 61 : 57 - 81
  • [44] THE NEW FULL-NEWTON STEP INTERIOR-POINT ALGORITHM FOR THE FISHER MARKET EQUILIBRIUM PROBLEMS BASED ON A KERNEL FUNCTION
    Chi, Xiaoni
    Yang, Qili
    Wan, Zhongping
    Zhang, Suobin
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (09) : 7018 - 7035
  • [45] Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
    Gu, G.
    Mansouri, H.
    Zangiabadi, M.
    Bai, Y. Q.
    Roos, C.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 145 (02) : 271 - 288
  • [46] A New full-newton step infeasible interior-point method for P*(?)-linear Complementarity problem
    Lee, Jong-Kyu
    Cho, You-Young
    Jin, Jin-Hee
    Cho, Gyeong-Mi
    OPTIMIZATION LETTERS, 2024, 18 (04) : 943 - 964
  • [47] Improved Full-Newton Step O(nL) Infeasible Interior-Point Method for Linear Optimization
    G. Gu
    H. Mansouri
    M. Zangiabadi
    Y. Q. Bai
    C. Roos
    Journal of Optimization Theory and Applications, 2010, 145 : 271 - 288
  • [48] A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem
    Xiaoni Chi
    Guoqiang Wang
    Journal of Optimization Theory and Applications, 2021, 190 : 108 - 129
  • [49] A Full-Newton Step Infeasible Interior-Point Method for the Special Weighted Linear Complementarity Problem
    Chi, Xiaoni
    Wang, Guoqiang
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (01) : 108 - 129
  • [50] A Full-Newton Step Infeasible Interior-Point Algorithm for Linear Programming Based on a Special Self-Regular Proximity
    Liu, Zhong-Yi
    Chen, Yue
    OPERATIONS RESEARCH AND ITS APPLICATIONS, 2010, 12 : 106 - +