Machinability of ultrasonic vibration-assisted micro-grinding in biological bone using nanolubricant

被引:0
|
作者
Yuying Yang
Min Yang
Changhe Li
Runze Li
Zafar Said
Hafiz Muhammad Ali
Shubham Sharma
机构
[1] Qingdao University of Technology,School of Mechanical and Automotive Engineering
[2] Qingdao University,College of Physics
[3] University of Southern California,Department of Biomedical Engineering
[4] University of Sharjah,Department of Sustainable and Renewable Energy Engineering
[5] King Fahd University of Petroleum and Minerals,Mechanical Engineering Department
[6] IK Gujral Punjab Technical University,Department of Mechanical Engineering
来源
关键词
micro-grinding; biological bone; ultrasonic vibration (UV); nanoparticle jet mist cooling (NJMC); grinding force; grinding temperature;
D O I
暂无
中图分类号
学科分类号
摘要
Bone grinding is an essential and vital procedure in most surgical operations. Currently, the insufficient cooling capacity of dry grinding, poor visibility of drip irrigation surgery area, and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding. A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling (U-NJMC) is innovatively proposed to solve the technical problem. It combines the advantages of ultrasonic vibration (UV) and nanoparticle jet mist cooling (NJMC). Notwithstanding, the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated. The grinding force, friction coefficient, specific grinding energy, and grinding temperature under dry, drip irrigation, UV, minimum quantity lubrication (MQL), NJMC, and U-NJMC micro-grinding were compared and analyzed. Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N, which were 75.1% and 82.9% less than those in dry grinding, respectively. The minimum friction coefficient and specific grinding energy were achieved using U-NJMC. Compared with dry, drip, UV, MQL, and NJMC grinding, the friction coefficient of U-NJMC was decreased by 31.3%, 17.0%, 19.0%, 9.8%, and 12.5%, respectively, and the specific grinding energy was decreased by 83.0%, 72.7%, 77.8%, 52.3%, and 64.7%, respectively. Compared with UV or NJMC alone, the grinding temperature of U-NJMC was decreased by 33.5% and 10.0%, respectively. These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.
引用
收藏
相关论文
共 50 条
  • [21] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Ding, Kai
    Fu, Yucan
    Su, Honghua
    Gong, Xiaobei
    Wu, Keqin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2014, 71 (9-12): : 1929 - 1938
  • [22] Wear of diamond grinding wheel in ultrasonic vibration-assisted grinding of silicon carbide
    Fu, Y. (yucanfu@nuaa.edu.cn), 1929, Springer London (71): : 9 - 12
  • [23] A novel approach to fabricate high aspect ratio micro-rod using ultrasonic vibration-assisted centreless grinding
    Xu, Weixing
    Wu, Yongbo
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 141 : 21 - 30
  • [24] Research on Grinding Force of Ultrasonic Vibration-Assisted Grinding of C/SiC Composite Materials
    Wang, Dongpo
    Fan, Hongjie
    Xu, Dong
    Zhang, Yuanlin
    APPLIED SCIENCES-BASEL, 2022, 12 (20):
  • [25] Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel
    Deguo Li
    Jinyuan Tang
    Haifeng Chen
    Wen Shao
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 1467 - 1479
  • [26] Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic
    Shen, J. Y.
    Wang, J. Q.
    Jiang, B.
    Xu, X. P.
    WEAR, 2015, 332 : 788 - 793
  • [27] Study on grinding force model in ultrasonic vibration-assisted grinding of alloy structural steel
    Li, Deguo
    Tang, Jinyuan
    Chen, Haifeng
    Shao, Wen
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (5-8): : 1467 - 1479
  • [28] Surface Properties of Ultrasonic Vibration-Assisted ELID Grinding ZTA Ceramics
    Fu, Zongxia
    Chen, Fan
    Bie, Wenbo
    Zhao, Bo
    Wang, Xiaobo
    MATERIALS, 2022, 15 (02)
  • [29] Using vibration-assisted grinding to reduce subsurface damage
    Qu, W
    Wang, K
    Miller, MH
    Huang, Y
    Chandra, A
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2000, 24 (04): : 329 - 337
  • [30] Studies on ultrasonic vibration-assisted coining of micro-cylinder
    Jiqiang Zhai
    Yanjin Guan
    Wenxia Wang
    Lihua Zhu
    Zhendong Xie
    Jun Lin
    The International Journal of Advanced Manufacturing Technology, 2019, 100 : 2031 - 2044