A Lagrange multiplier method for a discrete fracture model for flow in porous media

被引:0
|
作者
Markus Köppel
Vincent Martin
Jérôme Jaffré
Jean E. Roberts
机构
[1] Universtität Stuttgart,IANS
[2] Université de Technologie de Compiègne (UTC),LMAC
[3] INRIA Paris,undefined
来源
Computational Geosciences | 2019年 / 23卷
关键词
Discrete fracture model; Porous media; Finite element method; Lagrange multiplier method; Nonconforming grids;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a novel discrete fracture model for single-phase Darcy flow in porous media with fractures of co-dimension one, which introduces an additional unknown at the fracture interface. Inspired by the fictitious domain method, this Lagrange multiplier couples fracture and matrix domain and represents a local exchange of the fluid. The multipliers naturally impose the equality of the pressures at the fracture interface. The model is thus appropriate for domains with fractures of permeability higher than that in the surrounding bulk domain. In particular, the novel approach allows for independent, regular meshing of fracture and matrix domain and therefore avoids the generation of small elements. We show existence and uniqueness of the weak solution of the continuous primal formulation. Moreover, we discuss the discrete inf-sup condition of two different finite element formulations. Several numerical examples verify the accuracy and convergence of proposed method.
引用
收藏
页码:239 / 253
页数:14
相关论文
共 50 条
  • [31] Modified upwind finite volume scheme with second-order Lagrange multiplier method for dimensionally reduced transport model in intersecting fractured porous media
    Liu, Wei
    Wang, Zhifeng
    Fan, Gexian
    Song, Yingxue
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 175 : 202 - 223
  • [32] Numerical Research of Two-Phase Flow in Fractured-Porous Media Based on Discrete Fracture Fetwork Model
    Pyatkov, A. A.
    Kosyakov, V. P.
    Rodionov, S. P.
    Botalov, A. Y.
    XV ALL-RUSSIAN SEMINAR DYNAMICS OF MULTIPHASE MEDIA, 2018, 1939
  • [33] Multiscale mixed finite element, discrete fracture-vug model for fluid flow in fractured vuggy porous media
    Zhang, Na
    Yao, Jun
    Xue, Shifeng
    Huang, Zhaoqin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 96 : 396 - 405
  • [34] A fully discrete finite element method for unsteady magnetohydrodynamic flow in porous media
    Ding, Qianqian
    Mao, Shipeng
    Wang, Xiaorong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2025, 145
  • [35] Discrete microbubbles flow in transparent porous media
    Ma, Y.
    Yan, G.
    Scheuermann, A.
    Li, L.
    Galindo-Torres, S. A.
    Bringemeier, D.
    UNSATURATED SOILS: RESEARCH & APPLICATIONS, VOLS 1 AND 2, 2014, : 1219 - 1223
  • [36] Numerical Investigation of Solute Transport in Fractured Porous Media Using the Discrete Fracture Model
    El-Amin, Mohamed F.
    Kou, Jisheng
    Sun, Shuyu
    COMPUTATIONAL SCIENCE - ICCS 2020, PT VII, 2020, 12143 : 102 - 115
  • [37] Wavelet stabilization of the Lagrange multiplier method
    Bertoluzza, S
    NUMERISCHE MATHEMATIK, 2000, 86 (01) : 1 - 28
  • [38] Multiscale mimetic method for two-phase flow in fractured media using embedded discrete fracture model
    Zhang, Qingfu
    Huang, Zhaoqin
    Yao, Jun
    Wang, Yueying
    Li, Yang
    ADVANCES IN WATER RESOURCES, 2017, 107 : 180 - 190
  • [39] A remark on Lagrange multiplier method (I)
    He, JH
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2001, 2 (02) : 161 - 164
  • [40] THE LAGRANGE MULTIPLIER METHOD FOR DIRICHLETS PROBLEM
    BRAMBLE, JH
    MATHEMATICS OF COMPUTATION, 1981, 37 (155) : 1 - 11