Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces

被引:0
|
作者
Elhoussine Azroul
Abdelmoujib Benkirane
Mohammed Srati
机构
[1] Sidi Mohamed Ben Abdellah University,
[2] Faculty of Sciences Dhar El Mahraz,undefined
[3] Laboratory of Mathematical Analysis and Applications,undefined
来源
关键词
Fractional Orlicz–Sobolev spaces; Fractional ; -Laplace operator; Direct method in calculus of variations; 35R11; 46E30; 58E05; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the existence of weak solution for a fractional type problems driven by a nonlocal operator of elliptic type in a fractional Orlicz–Sobolev space, with homogeneous Dirichlet boundary conditions. We first extend the fractional Sobolev spaces Ws,p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{s,p}$$\end{document} to include the general case WsLA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^sL_A$$\end{document}, where A is an N-function and s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in (0,1)$$\end{document}. We are concerned with some qualitative properties of the space WsLA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^sL_A$$\end{document} (completeness, reflexivity and separability). Moreover, we prove a continuous and compact embedding theorem of these spaces into Lebesgue spaces.
引用
收藏
页码:1350 / 1375
页数:25
相关论文
共 50 条
  • [41] EXISTENCE OF ENTROPY SOLUTIONS FOR NONLINEAR ELLIPTIC PROBLEM HAVING LARGE MONOTONOCITY IN WEIGHTED ORLICZ-SOBOLEV SPACES
    El Haji, B.
    El Moumni, M.
    Kouhaila, K.
    [J]. MATEMATICHE, 2021, 76 (01): : 37 - 61
  • [42] EXISTENCE OF SOLUTIONS FOR A NONLOCAL FRACTIONAL BOUNDARY VALUE PROBLEM
    Gao, Zhen
    Wang, Min
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (03) : 831 - 843
  • [43] Multiple solutions for a class of nonlocal quasilinear elliptic systems in Orlicz-Sobolev spaces
    Heidari, S.
    Razani, A.
    [J]. BOUNDARY VALUE PROBLEMS, 2021, 2021 (01)
  • [44] Existence of solutions for a fractional nonlocal boundary value problem
    Luca, Rodica
    [J]. CARPATHIAN JOURNAL OF MATHEMATICS, 2020, 36 (03) : 453 - 462
  • [45] Existence and Uniqueness of Solutions for a Boundary Value Problem of Fractional Type with Nonlocal Integral Boundary Conditions in Hölder Spaces
    I. Cabrera
    J. Harjani
    K. Sadarangani
    [J]. Mediterranean Journal of Mathematics, 2018, 15
  • [46] Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces
    Santos, Jefferson A.
    Soares, Sergio H. M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 428 (02) : 1035 - 1053
  • [47] Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
    Bahrouni, Sabri
    Salort, Ariel M.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
  • [48] Existence and Multiplicity of Solutions for a Nonlocal Problem with Critical Sobolev–Hardy Nonlinearities
    Adel Daoues
    Amani Hammami
    Kamel Saoudi
    [J]. Mediterranean Journal of Mathematics, 2020, 17
  • [49] Existence and multiplicity of solutions for a class of quasilinear elliptic systems in Orlicz-Sobolev spaces
    Wang, Liben
    Zhang, Xingyong
    Fang, Hui
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (07): : 3792 - 3814
  • [50] On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1157 - 1165