Existence of ground state solutions for weighted biharmonic problem involving non linear exponential growth

被引:0
|
作者
Brahim Dridi
Rached Jaidane
机构
[1] Umm Al-Qura University,Department of Mathematics, Faculty of Applied Sciences
[2] University of Tunis El Manar,Department of Mathematics, Faculty of Science of Tunis
关键词
Weighted Sobolev space; Biharmonic operator; Critical exponential growth; 35J20; 49J45; 35K57; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the following problem Δ(wβ(x)Δu)=f(x,u)inB,u=∂u∂n=0on∂B,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Delta (w_{\beta }(x)\Delta u) = \ f(x,u) \quad \text{ in } \quad B, \quad u=\frac{\partial u}{\partial n}=0 \quad \text{ on } \quad \partial B, \end{aligned}$$\end{document}where B is the unit ball of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{4}$$\end{document} and wβ(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ w_{\beta }(x)$$\end{document} a singular weight of logarithm type. The reaction source f(x, u) is a radial function with respect to x and it is critical in view of exponential inequality of Adams’ type. The existence result is proved by using the constrained minimization in Nehari set coupled with the quantitative deformation lemma and degree theory results.
引用
收藏
页码:831 / 851
页数:20
相关论文
共 50 条