Stochastic Diffusion Equation with Fractional Laplacian on the First Quadrant

被引:0
|
作者
Jorge Sanchez-Ortiz
Francisco J. Ariza-Hernandez
Martin P. Arciga-Alejandre
Eduard A. Garcia-Murcia
机构
[1] Universidad Autónoma de Guerrero Av. Lázaro Cárdenas S/N Cd. Universitaria Chilpancingo,Facultad de Matemáticas
关键词
Primary 26A33; Secondary 31A10; 58J32; fractional Laplacian; Fokas method; Brownian motion; Monte Carlo integration;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider an initial boundary-value problem for a stochastic evolution equation with fractional Laplacian and white noise on the first quadrant. To construct the integral representation of solutions we adapt the main ideas of the Fokas method and by using Picard scheme we prove its existence and uniqueness. Moreover, Monte Carlo methods are implemented to find numerical solutions for particular examples.
引用
收藏
页码:795 / 806
页数:11
相关论文
共 50 条
  • [21] An inverse random source problem in a stochastic fractional diffusion equation
    Niu, Pingping
    Helin, Tapio
    Zhang, Zhidong
    INVERSE PROBLEMS, 2020, 36 (04)
  • [22] An Accelerated Convergence Scheme for Solving Stochastic Fractional Diffusion Equation
    Liu, Xing
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
  • [23] Growing solutions of the fractional p-Laplacian equation in the Fast Diffusion range
    Luis Vazquez, Juan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [24] Fractional nonlinear diffusion equation and first passage time
    Wang, Jun
    Zhang, Wen-Jun
    Liang, Jin-Rong
    Xiao, Han-Bin
    Ren, Fu-Yao
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (04) : 764 - 772
  • [25] Implicit Runge-Kutta with spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian
    Zhang, Yanming
    Li, Yu
    Yu, Yuexin
    Wang, Wansheng
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (03)
  • [26] Error estimates of general linear and spectral Galerkin methods for the fractional diffusion equation with spectral fractional Laplacian
    Zhang, Yanming
    Li, Yu
    Yu, Yuexin
    Wang, Wansheng
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (02):
  • [27] ON A VISCOELASTIC KIRCHHOFF EQUATION WITH FRACTIONAL LAPLACIAN
    Liu, Yang
    Zhang, Li
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (08): : 2543 - 2565
  • [28] On the Decomposition of Solutions: From Fractional Diffusion to Fractional Laplacian
    Yulong Li
    Fractional Calculus and Applied Analysis, 2021, 24 : 1571 - 1600
  • [29] ON THE DECOMPOSITION OF SOLUTIONS: FROM FRACTIONAL DIFFUSION TO FRACTIONAL LAPLACIAN
    Li, Yulong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2021, 24 (05) : 1571 - 1600
  • [30] High-Accuracy Time Discretization of Stochastic Fractional Diffusion Equation
    Liu, Xing
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)