Combinatorial aspects of the sensor location problem

被引:0
|
作者
Lucio Bianco
Giuseppe Confessore
Monica Gentili
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Informatica, Sistemi e Produzione, Via del Politecnico 1
[2] Via del Politecnico 1,Istituto di Tecnologie Industriali e Automazione, Sezione di Roma, Consiglio Nazionale delle, c/o DISP
[3] Università di Salerno,Dipartimento di Matematica ed Informatica
来源
关键词
Traffic problems; Combinatorial optimization; Complexity analysis; Graph theoretical approach;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we address the Sensor Location Problem, that is the location of the minimum number of counting sensors, on the nodes of a network, in order to determine the arc flow volume of all the network. Despite the relevance of the problem from a practical point of view, there are very few contributions in the literature and no combinatorial analysis is performed to take into account particular structure of the network. We prove the problem is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal N \cal P$$\end{document}-complete in different cases. We analyze special classes of graphs that are particularly interesting from an application point of view, for which we give low order polynomial solution algorithms.
引用
收藏
页码:201 / 234
页数:33
相关论文
共 50 条
  • [21] Traffic sensor location problem: Three decades of research
    Owais, Mahmoud
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [22] Technology of Construction the Unique Solution to Sensor Location Problem
    Pilipchuk, L. A.
    Vishnevetskaya, T. S.
    39TH INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE13), 2013, 1570 : 499 - 505
  • [23] Research problem: Combinatorial and multilinear aspects of sign-balanced posets
    White, DE
    Williamson, SG
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (02): : 169 - 181
  • [24] Improved combinatorial approximation algorithms for the k-level facility location problem
    Ageev, A
    Ye, YY
    Zhang, JW
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 145 - 156
  • [25] A combinatorial 2.375-approximation algorithm for the facility location problem with submodular penalties
    Li, Yu
    Du, Donglei
    Xiu, Naihua
    Xu, Dachuan
    THEORETICAL COMPUTER SCIENCE, 2013, 476 : 109 - 117
  • [26] Improved combinatorial approximation algorithms for the k-level facility location problem
    Ageev, A
    Ye, YY
    Zhang, JW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2004, 18 (01) : 207 - 217
  • [27] A COMBINATORIAL PROBLEM
    GOBEL, F
    SIAM REVIEW, 1970, 12 (01) : 151 - &
  • [28] On a combinatorial problem
    Smadici, C
    DISCRETE MATHEMATICS, 2001, 232 (1-3) : 67 - 76
  • [29] A COMBINATORIAL PROBLEM
    GREENWOO.RE
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (02): : 177 - &
  • [30] A COMBINATORIAL PROBLEM
    LAFER, P
    LONG, CT
    AMERICAN MATHEMATICAL MONTHLY, 1962, 69 (09): : 876 - &