Convergence of measures in forcing extensions

被引:0
|
作者
Damian Sobota
Lyubomyr Zdomskyy
机构
[1] Technische Universität Wien,Institut für Diskrete Mathematik und Geometrie
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove that if A is a σ-complete Boolean algebra in a model V of set theory and ℙ ∈ V is a proper forcing with the Laver property preserving the ground model reals non-meager, then every pointwise convergent sequence of measures on A is weakly convergent, i.e., A has the Vitali- Hahn-Saks property. This yields a consistent example of a whole class of infinite Boolean algebras with this property and of cardinality strictly smaller than the dominating number ∂. We also obtain a new consistent situation in which there exists an Efimov space.
引用
收藏
页码:501 / 529
页数:28
相关论文
共 50 条