Global optimality conditions and optimization methods for quadratic integer programming problems

被引:0
|
作者
Z. Y. Wu
G. Q. Li
J. Quan
机构
[1] University of Ballarat,School of Information Technology and Mathematical Sciences
[2] Shanghai University,Department of Mathematics
来源
关键词
Global optimality conditions; Quadratic integer programming problem; Optimization method; Auxiliary function; 41A65; 41A29; 90C30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.
引用
收藏
页码:549 / 568
页数:19
相关论文
共 50 条
  • [41] Global optimality conditions for quadratic 0-1 programming with inequality constraints
    张连生
    陈伟
    姚奕荣
    Journal of Shanghai University(English Edition), 2010, 14 (02) : 150 - 154
  • [42] Global optimality condition for quadratic optimization problems under data uncertainty
    Moussa Barro
    Ali Ouedraogo
    Sado Traore
    Positivity, 2021, 25 : 1027 - 1044
  • [43] Global optimality conditions for quadratic 0-1 programming with inequality constraints
    张连生
    陈伟
    姚奕荣
    Advances in Manufacturing, 2010, (02) : 150 - 154
  • [44] Radar Target Detection via Global Optimality Conditions for Binary Quadratic Programming
    Zhao, Wenjing
    Cui, Guolong
    Jin, Minglu
    Wang, Yumiao
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2502 - 2517
  • [45] Global optimization of mixed-integer bilevel programming problems
    Gumus, Zeynep H.
    Floudas, Christodoulos A.
    COMPUTATIONAL MANAGEMENT SCIENCE, 2005, 2 (03) : 181 - 212
  • [46] Global optimality condition for quadratic optimization problems under data uncertainty
    Barro, Moussa
    Ouedraogo, Ali
    Traore, Sado
    POSITIVITY, 2021, 25 (03) : 1027 - 1044
  • [47] Optimization Methods for Mixed Integer Weakly Concave Programming Problems
    Wu Z.-Y.
    Bai F.-S.
    Yang Y.-J.
    Jiang F.
    Wu, Z.-Y. (zywu@cqnu.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (02): : 195 - 222
  • [48] ON THE REGULARIZATION OF VECTOR INTEGER QUADRATIC PROGRAMMING PROBLEMS
    Emeliehev, V. A.
    Gurevskii, E. E.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2009, 45 (02) : 274 - 280
  • [49] Globally solving nonconvex quadratic programming problems with box constraints via integer programming methods
    Bonami P.
    Günlük O.
    Linderoth J.
    Mathematical Programming Computation, 2018, 10 (3) : 333 - 382
  • [50] Necessary global optimality conditions for nonlinear programming problems with polynomial constraints
    Jeyakumar, V.
    Li, G. Y.
    MATHEMATICAL PROGRAMMING, 2011, 126 (02) : 393 - 399