The a-function for gauge theories

被引:0
|
作者
I. Jack
C. Poole
机构
[1] University of Liverpool,Department of Mathematical Sciences
关键词
Renormalization Group; Supersymmetric gauge theory;
D O I
暂无
中图分类号
学科分类号
摘要
The a-function is a proposed quantity defined for quantum field theories which has a monotonic behaviour along renormalisation group flows, being related to the β-functions via a gradient flow equation involving a positive definite metric. We construct the a-function at four-loop order for a general gauge theory with fermions and scalars, using only one and two loop β-functions; we are then able to provide a stringent consistency check on the general three-loop gauge β-function. In the case of an N=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=1 $$\end{document} supersymmetric gauge theory, we present a general condition on the chiral field anomalous dimension which guarantees an exact all-orders expression for the a-function; and we verify this up to fifth order (corresponding to the three-loop anomalous dimension).
引用
收藏
相关论文
共 50 条
  • [21] Gauge theories beyond gauge theory
    Wess, J
    NONCOMMUTATIVE STRUCTURES IN MATHEMATICS AND PHYSICS, 2001, 22 : 1 - 11
  • [22] Gauge dependence in topological gauge theories
    Becchi, CM
    Giusto, S
    Imbimbo, C
    PHYSICS LETTERS B, 1997, 393 (3-4) : 342 - 348
  • [23] GAUGE THEORIES AS THEORIES OF SPONTANEOUS BREAKDOWN
    IVANOV, EA
    OGIEVETSKY, VI
    LETTERS IN MATHEMATICAL PHYSICS, 1976, 1 (04) : 309 - 313
  • [24] Lusztig's a-function for Coxeter groups of rank 3
    Zhou, Peipei
    JOURNAL OF ALGEBRA, 2013, 384 : 169 - 193
  • [25] Lusztig's a-function in type Bn in the asymptotic case
    Geck, M
    Iancu, L
    NAGOYA MATHEMATICAL JOURNAL, 2006, 182 : 199 - 240
  • [26] GAUGE THEORIES AS SPONTANEOUS BREAKING THEORIES
    IVANOV, EA
    OGIEVETSKII, VI
    JETP LETTERS, 1976, 23 (11) : 606 - 609
  • [27] Seiberg duality, quiver gauge theories, and Ihara's zeta function
    Zhou, Da
    Xiao, Yan
    He, Yang-Hui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (18-19):
  • [28] ANALYTIC PROPERTIES OF THE VERTEX FUNCTION IN GAUGE-THEORIES .1.
    BALL, JS
    CHIU, TW
    PHYSICAL REVIEW D, 1980, 22 (10): : 2542 - 2549
  • [29] RESTRICTIONS ON THE APPLICABILITY OF ZETA-FUNCTION REGULARIZATION IN GAUGE-THEORIES
    REBHAN, A
    PHYSICAL REVIEW D, 1989, 39 (10): : 3101 - 3109
  • [30] Charges in gauge theories
    Robin Horan
    Martin Lavelle
    David Mcmullan
    Pramana, 1998, 51 : 317 - 355