Uncertainty Principles for the Dunkl-Type Segal–Bargmann Transform

被引:1
|
作者
Fethi Soltani
机构
[1] Jazan University,Department of Mathematics, Faculty of Science
来源
关键词
Dunkl-type Segal–Bargmann transform; Uncertainty principles; 30H20; 32A15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we establish Heisenberg-type uncertainty principle for the Dunkl-type Segal–Bargmann space Fk(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_k(\mathbb {C})$$\end{document}. Next, we give Heisenberg-type uncertainty principle, local-type uncertainty principle, Donoho-Stark-type uncertainty principle and Matolcsi-Szücs-type uncertainty principle for the Dunkl-type Segal–Bargmann transform Bk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}_k$$\end{document}.
引用
收藏
页码:475 / 490
页数:15
相关论文
共 50 条
  • [31] The Generalized Segal–Bargmann Transform and Special Functions
    Mark Davidson
    Gestur Ólafsson
    Acta Applicandae Mathematica, 2004, 81 : 29 - 50
  • [32] Yang–Mills Theory and the Segal–Bargmann Transform
    Bruce K. Driver
    Brian C. Hall
    Communications in Mathematical Physics, 1999, 201 : 249 - 290
  • [33] The Segal-Bargmann transform for Levy functionals
    Lee, YJ
    Shih, HH
    JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) : 46 - 83
  • [34] Paley-Wiener Theorem for a Generalized Fourier Transform Associated to a Dunkl-Type Operator
    Fei, Minggang
    Yang, Lan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [35] Lp local uncertainty principles for the Dunkl Gabor transform on Rd
    Mejjaoli, Hatem
    Sraieb, Nadia
    Trimeche, Khalifa
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2020, 26 (03): : 1163 - 1182
  • [36] A new form of the Segal-Bargmann transform for Lie groups of compact type
    Hall, BC
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04): : 816 - 834
  • [37] THE SEGAL-BARGMANN TRANSFORM FOR COMPACT QUOTIENTS OF SYMMETRIC SPACES OF THE COMPLEX TYPE
    Hall, Brian C.
    Mitchell, Jeffrey J.
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (01): : 13 - 45
  • [38] Hankel-type Segal–Bargmann transform and its applications to UP and PDEs
    Fethi Soltani
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [39] Qualitative uncertainty principles for the generalized Fourier transform associated to a Dunkl type operator on the real line
    Mejjaoli, Hatem
    Trimeche, Khalifa
    ANALYSIS AND MATHEMATICAL PHYSICS, 2016, 6 (02) : 141 - 162
  • [40] Qualitative uncertainty principles for the generalized Fourier transform associated to a Dunkl type operator on the real line
    Hatem Mejjaoli
    Khalifa Trimèche
    Analysis and Mathematical Physics, 2016, 6 : 141 - 162