On the incomplete oblique projections method for solving box constrained least squares problems

被引:0
|
作者
H. Scolnik
N. Echebest
M. T. Guardarucci
机构
[1] Universidad de Buenos Aires,Departamento de Computación, Facultad de Ciencias Exactas y Naturales
[2] Universidad Nacional de La Plata,Departamento de Matemática, Facultad de Ciencias Exactas
[3] Universidad Nacional de La Plata,Departamento de Ciencias Básicas, Facultad de Ingeniería
来源
Numerical Algorithms | 2014年 / 66卷
关键词
Inconsistent systems; Box constrained; Incomplete projections; 65F10;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax − r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods.
引用
收藏
页码:17 / 32
页数:15
相关论文
共 50 条
  • [41] Improved incomplete constrained weighted least squares TDOA/FDOA passive location method
    Zhou G.
    Yang L.
    Liu Z.
    [J]. 1686, Chinese Institute of Electronics (40): : 1686 - 1692
  • [42] CONSTRAINED LEAST-SQUARES ESTIMATORS OF OBLIQUE COMMON FACTORS
    MCDONALD, RP
    [J]. PSYCHOMETRIKA, 1981, 46 (03) : 337 - 341
  • [43] Greedy Block Extended Kaczmarz Method for Solving the Least Squares Problems
    Ke, Ni-Hong
    Li, Rui
    Yin, Jun-Feng
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [44] The least-squares meshfree method for solving linear elastic problems
    K.-C. Kwon
    S.-H. Park
    B.-N. Jiang
    S.-K. Youn
    [J]. Computational Mechanics, 2003, 30 : 196 - 211
  • [45] The least-squares meshfree method for solving linear elastic problems
    Kwon, KC
    Park, SH
    Jiang, BN
    Youn, SK
    [J]. COMPUTATIONAL MECHANICS, 2003, 30 (03) : 196 - 211
  • [46] Stationary Landweber method with momentum acceleration for solving least squares problems
    Shirilord, Akbar
    Dehghan, Mehdi
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 157
  • [47] A robust method based on LOVO functions for solving least squares problems
    E. V. Castelani
    R. Lopes
    W. V. I. Shirabayashi
    F. N. C. Sobral
    [J]. Journal of Global Optimization, 2021, 80 : 387 - 414
  • [48] Local convergence of a secant type method for solving least squares problems
    Ren, Hongmin
    Argyros, Ioannis K.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) : 3816 - 3824
  • [49] SOLVING SEPARABLE NONLINEAR LEAST-SQUARES PROBLEMS BY DAVIDENKOS METHOD
    SAGARA, N
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1986, 29 (02) : 99 - 112
  • [50] A CONTINUATION METHOD FOR SOLVING SEPARABLE NONLINEAR LEAST-SQUARES PROBLEMS
    SAGARA, N
    FUKUSHIMA, M
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (02) : 157 - 161