The preconditioned GMRES method for systems of coupled FEM-BEM equations

被引:0
|
作者
Patrick Mund
Ernst P. Stephan
机构
[1] Universität Hannover,Institut für Angewandte Mathematik
来源
关键词
Boundary Element; Boundary Element Method; GMRES Method; Hierarchical Basis; Boundary Integral Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the generalized minimal residual method (GMRES) as a solver for coupled finite element and boundary element equations. To accelerate the convergence of GMRES we apply a hierarchical basis block preconditioner for piecewise linear finite elements and piecewise constant boundary elements. It is shown that the number of iterations which is necessary to reach a given accuracy grows only poly-logarithmically with the number of unknowns.
引用
收藏
页码:131 / 144
页数:13
相关论文
共 50 条
  • [31] Efficient symmetric FEM-BEM coupled simulations of electro-quasistatic fields
    Steinmetz, T.
    Goedel, N.
    Wimmer, G.
    Clemens, M.
    Kurz, S.
    Bebendorf, M.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1346 - 1349
  • [32] A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems
    Shah, Abid A.
    [J]. LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2011, 8 (03): : 305 - 334
  • [33] Design and Analysis of a Switched Reluctance Motor Using a Coupled FEM-BEM Approach
    Becheikh, M.
    Bendiabdellah, A.
    [J]. INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2010, 5 (02): : 508 - 513
  • [34] A least-squares fem-bem coupling method for linear elasticity
    Maischak, M.
    Oestmann, S.
    Stephan, E. P.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 457 - 472
  • [35] THE EDDY CURRENT LLG EQUATIONS: FEM-BEM COUPLING AND A PRIORI ERROR ESTIMATES
    Feischl, Michael
    Thanh Tran
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 1786 - 1819
  • [36] Application of FEM-BEM coupling method to eddy current testing problems
    Cheng, WY
    Miya, K
    Demachi, K
    [J]. ELECTROMAGNETIC NONDESTRUCTIVE EVALUATION (IV), 2000, 17 : 17 - 24
  • [37] Interface relaxation algorithms for BEM-BEM coupling and FEM-BEM coupling
    Elleithy, WM
    Tanaka, M
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (26-27) : 2977 - 2992
  • [38] On an adaptive FEM-BEM for nonlinear transmission problem
    Liu, D. J.
    Qiu, Y. N.
    [J]. APPLIED MATHEMATICS LETTERS, 2022, 125
  • [39] A Symmetric Interior Penalty FEM-BEM Formulation
    Allilomes, Peter
    Rawat, Vinnet
    Lee, Jin-Fa
    [J]. 2009 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM AND USNC/URSI NATIONAL RADIO SCIENCE MEETING, VOLS 1-6, 2009, : 517 - 520
  • [40] Biorthogonal wavelet approximation for the coupling of FEM-BEM
    H. Harbrecht
    F. Paiva
    C. Pérez
    R. Schneider
    [J]. Numerische Mathematik, 2002, 92 : 325 - 356