Constrained nonnegative matrix factorization-based semi-supervised multilabel learning

被引:0
|
作者
Dingguo Yu
Bin Fu
Guandong Xu
Aihong Qin
机构
[1] Zhejiang University of Media and Communications,School of New Media
[2] University of Technology,Advanced Analytics Institute
关键词
Semi-supervised learning; Nonnegative matrix factorization (NMF); Multilabel learning; Weak label;
D O I
暂无
中图分类号
学科分类号
摘要
In many multilabel learning applications, instances with labels being fully provided are scarce, while partially labelled data and unlabelled data are more common due to the expensive cost of manual labelling. However, most of existing models are based on the assumption that the fully labelled training data is sufficient. To deal with the partially labelled and unlabelled data effectively, we present a novel semi-supervised multilabel learning approach based on constrained non-negative matrix factorization in this paper. This approach assumes that if two instances are highly similar in terms of their features, they would also be similar in their associated labels set. Specifically, We first define three matrices to measure the similarity of each pair of instances in two different ways. Then, the optimal assignation of labels to the unlabelled instance is determined by minimizing the differentiation between these two similarity sets via a non-negative matrix factorization process. We also present a threshold learning algorithm to determine the classification threshold for each label in our proposed approach. Extensive experiment is conducted on various datasets, and the results demonstrate that our method show significantly better performance than other state-of-the-art approaches. It is especially suitable for the situations with a smaller size of labelled training data, or subset of the training data are partially labelled.
引用
收藏
页码:1093 / 1100
页数:7
相关论文
共 50 条
  • [21] Semi-supervised nonnegative matrix factorization with label propagation and constraint propagation
    Mo, Yuanjian
    Li, Xiangli
    Mei, Jianping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
  • [22] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Zhang, Ying
    Li, Xiangli
    Jia, Mengxue
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3577 - 3587
  • [23] Adaptive Multi-view Semi-supervised Nonnegative Matrix Factorization
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    Liu, Yanbei
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT II, 2016, 9948 : 435 - 444
  • [24] Dual semi-supervised convex nonnegative matrix factorization for data representation
    Peng, Siyuan
    Yang, Zhijing
    Ling, Bingo Wing-Kuen
    Chen, Badong
    Lin, Zhiping
    INFORMATION SCIENCES, 2022, 585 : 571 - 593
  • [25] Semi-supervised nonnegative matrix factorization with positive and negative label propagations
    Changpeng Wang
    Jiangshe Zhang
    Tianjun Wu
    Meng Zhang
    Guang Shi
    Applied Intelligence, 2022, 52 : 9739 - 9750
  • [26] Network Embedding Using Semi-Supervised Kernel Nonnegative Matrix Factorization
    He, Chaobo
    Zhang, Qiong
    Tang, Yong
    Liu, Shuangyin
    Liu, Hai
    IEEE ACCESS, 2019, 7 : 92732 - 92744
  • [27] Semi-supervised nonnegative matrix factorization with pairwise constraints for image clustering
    Ying Zhang
    Xiangli Li
    Mengxue Jia
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3577 - 3587
  • [28] Dual local learning regularized nonnegative matrix factorization and its semi-supervised extension for clustering
    Shu, Zhenqiu
    Zhang, Yunmeng
    Li, Peng
    You, Congzhe
    Liu, Zhen
    Fan, Honghui
    Wu, Xiao-jun
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (11): : 6213 - 6231
  • [29] Dual local learning regularized nonnegative matrix factorization and its semi-supervised extension for clustering
    Zhenqiu Shu
    Yunmeng Zhang
    Peng Li
    Congzhe You
    Zhen Liu
    Honghui Fan
    Xiao-jun Wu
    Neural Computing and Applications, 2021, 33 : 6213 - 6231
  • [30] Solving consensus and semi-supervised clustering problems using nonnegative matrix factorization
    Li, Tao
    Ding, Chris
    Jordan, Michael I.
    ICDM 2007: PROCEEDINGS OF THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 577 - +