From image processing to topological modelling with p-adic numbers

被引:0
|
作者
Patrick Erik Bradley
机构
[1] Institute of Computer Vision and Remote Sensing,Karlsruhe Institute of Technology
关键词
p-adic numbers; scale space; segmentation; algebraic topology;
D O I
10.1134/S2070046610040047
中图分类号
学科分类号
摘要
Encoding the hierarchical structure of images by p-adic numbers allows for image processing and computer vision methods motivated from arithmetic physics. The p-adic Polyakov action leads to the p-adic diffusion equation in low level vision. Hierarchical segmentation provides another way of p-adic encoding. Then a topology on that finite set of p-adic numbers yields a hierarchy of topological models underlying the image. In the case of chain complexes, the chain maps yield conditions for the existence of a hierarchy, and these can be expressed in terms of p-adic integrals. Such a chain complex hierarchy is a special case of a persistence complex from computational topology, where it is used for computing persistence barcodes for shapes. The approach is motivated by the observation that using p-adic numbers often leads to more efficient algorithms than their real or complex counterparts.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条
  • [21] P-ADIC ANALYSIS AND BELL NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (22): : 1257 - 1259
  • [22] TRANSCENDENTAL NUMBERS IN P-ADIC DOMAIN
    ADAMS, WW
    AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (02) : 279 - &
  • [23] A univalent formalization of the p-adic numbers
    Pelayo, Alvaro
    Voevodsky, Vladimir
    Warren, Michael A.
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2015, 25 (05) : 1147 - 1171
  • [24] Quantum mechanics on p-adic numbers
    Vourdas, A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (45)
  • [25] ON EXPRESSIBLE SETS AND p-ADIC NUMBERS
    Hancl, Jaroslav
    Nair, Radhakrishnan
    Pulcerova, Simona
    Sustek, Jan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2011, 54 : 411 - 422
  • [26] Approximation lattices of p-adic numbers
    deSmedt, S
    P-ADIC FUNCTIONAL ANALYSIS, 1997, 192 : 375 - 382
  • [27] On p-adic T-numbers
    Pejkovic, Tomislav
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (3-4): : 549 - 567
  • [28] P ≠ NC over the p-adic numbers
    Maller, M
    Whitehead, J
    JOURNAL OF COMPLEXITY, 2003, 19 (02) : 125 - 131
  • [29] A derivative on the field of p-adic numbers
    Avdispahić M.
    Memić N.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2010, 2 (4) : 278 - 284
  • [30] On the heights of totally p-adic numbers
    Fili, Paul
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (01): : 103 - 109