From image processing to topological modelling with p-adic numbers

被引:0
|
作者
Patrick Erik Bradley
机构
[1] Institute of Computer Vision and Remote Sensing,Karlsruhe Institute of Technology
关键词
p-adic numbers; scale space; segmentation; algebraic topology;
D O I
10.1134/S2070046610040047
中图分类号
学科分类号
摘要
Encoding the hierarchical structure of images by p-adic numbers allows for image processing and computer vision methods motivated from arithmetic physics. The p-adic Polyakov action leads to the p-adic diffusion equation in low level vision. Hierarchical segmentation provides another way of p-adic encoding. Then a topology on that finite set of p-adic numbers yields a hierarchy of topological models underlying the image. In the case of chain complexes, the chain maps yield conditions for the existence of a hierarchy, and these can be expressed in terms of p-adic integrals. Such a chain complex hierarchy is a special case of a persistence complex from computational topology, where it is used for computing persistence barcodes for shapes. The approach is motivated by the observation that using p-adic numbers often leads to more efficient algorithms than their real or complex counterparts.
引用
收藏
页码:293 / 304
页数:11
相关论文
共 50 条
  • [1] From Image Processing to Topological Modelling with p-Adic Numbers
    Bradley, Patrick Erik
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (04) : 293 - 304
  • [2] On approximation of p-adic numbers by p-adic algebraic numbers
    Beresnevich, VV
    Bernik, VI
    Kovalevskaya, EI
    JOURNAL OF NUMBER THEORY, 2005, 111 (01) : 33 - 56
  • [3] P-ADIC NUMBERS
    BARSKY, D
    CHRISTOL, G
    RECHERCHE, 1995, 26 (278): : 766 - 771
  • [4] P-ADIC NUMBERS IN PHYSICS
    BREKKE, L
    FREUND, PGO
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 233 (01): : 1 - 66
  • [5] The frame of the p-adic numbers
    Avila, F.
    TOPOLOGY AND ITS APPLICATIONS, 2020, 273
  • [6] Simultaneous approximation problems of p-adic numbers and p-adic knapsack cryptosystems - Alice in p-adic numberland
    Inoue H.
    Kamada S.
    Naito K.
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2016, 8 (4) : 312 - 324
  • [7] Applications of p-adic numbers: from physics to geology
    Khrennikov, A. Yu.
    Oleschko, K.
    de Jesus Correa Lopez, M.
    ADVANCES IN NON-ARCHIMEDEAN ANALYSIS, 2016, 665 : 121 - 131
  • [8] Geometry of P-adic numbers.
    Monna, AF
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN, 1942, 45 (6/10): : 981 - 986
  • [9] Bernoulli numbers in p-adic analysis
    Kim, MS
    Son, JW
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) : 289 - 297
  • [10] P-ADIC ANALYSIS AND BERNOULLI NUMBERS
    BARSKY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (16): : 1069 - 1072